

Rapp Trans AG CH-4018 Basel

Tel. +41 61 335 77 77 Hochstrasse 100 Fax +41 61 335 77 00 www.rapp.ch

Stadt Singen am Hohentwiel

Untersuchungen zur Fortschreibung des Generalverkehrsplans der Stadt Singen

Bericht 8.11.2010 8.11.2010 Bericht-Nr. 67.072.0 / WW

Inhaltsverzeichnis

1	Ausgangssituation und Aufgabenstellung						
2	Grui	ndlagen	und Methodik	1			
	2.1	2.1 Aufgabe, Zielsetzungen					
	2.2 Methodik Verkehrsmodell						
	2.3	Verkeh	rsbefragung	2 4			
	2.4		rszählungen	6			
	2.5		nperimeter	6			
	2.6	Inhaltli	iche Abgrenzungen, optionale Ergänzungen	7			
3	Verl	kehrsana	alyse 2009	7			
	3.1	Radver	kehr	7			
	3.2	Motoris	sierter Individualverkehr	8			
		3.2.1	Tagesbelastungen	9			
		3.2.2	Spitzenstundenbelastungen	10			
		3.2.3	Besetzungsgrade	12			
		3.2.4	Fahrtzweck	14			
	3.3	Verkeh	rsentwicklung	15			
	3.4	Analyse	efall 2009	18			
		3.4.1	Gesamtverkehr DTV 2009	19			
		3.4.2	Verkehrszusammensetzung DTV 2009	19			
		3.4.3	Gesamtverkehr Abendspitze 2009	20			
	3.5	Zusam	menfassende Mängelanalyse MIV	21			
4	Prog	gnose de	er Verkehrsnachfrage 2025	22			
	4.1	Bevölke	erungsentwicklung	23			
	4.2	Siedlun	ngsstrukturelle Veränderungen Stadt Singen	24			
	4.3	Überre	gionale Mobilitäts- und Verkehrsentwicklung	26			
	4.4	Verkeh	rsnachfrage 2025	27			
	4.5	Verglei	chsfall 2025	28			
		4.5.1	Strassennetz Vergleichsfall 2025	28			
		4.5.2	Verkehrsbelastungen Vergleichsfall 2025	29			
5	Verl	cehrlich	e Wirkungsanalysen	30			
	5.1	Planfall	l 1 – Verkehrsberuhigter Geschäftsbereich	30			
		5.1.1	Strassennetz Planfall 1 – Verkehrsberuhigter Geschäftsbereich	31			
		5.1.2	Verkehrsbelastungen Planfall 1 – Verkehrsberuhigter Geschäftsbereich	31			
	5.2	Planfall	l 2 – Erweitertes Konzept verkehrsberuhigter Geschäftsbereich	33			
		5.2.1	Strassennetz Planfall 2 - Erweitertes Konzept verkehrsberuhigter				
			Geschäftsbereich	35			
		5.2.2	Verkehrsbelastungen Planfall 2 - Erweitertes Konzept verkehrsberuhigter				
			Geschäftsbereich	35			
6	Zusa	ammenf	assung und weiterer Ausblick	37			
	6.1	Vorlieg	ende Untersuchungsergebnisse	37			
	6.2	_	e Bearbeitungsschritte	39			

Tabellenverzeichnis

Tabelle 1: Tagesgesamt- und Schwerverkehrsbelastungen der Zählung 2009	10
Tabelle 2: Abendspitzengesamt- und Schwerverkehrsbelastungen der Zählung 2009	12
Tabelle 3: Belastungsvergleich 1999 / 2009	16
Tabelle 4: Belastungsvergleich 1999 / 2005 / 2009	17
Tabelle 5: Auswertung der Prognosen zur überregionalen Mobilitäts- und Verkehrsentwicklung	27
Tabelle 6: Tagesgesamt- und Abendspitzenverkehrsbelastungen Vergleichsfall 2025	29
Tabelle 7: Tagesgesamt- und Abendspitzenverkehrsbelastungen Planfall 1	32
Tabelle 8: Tagesgesamt- und Abendspitzenverkehrsbelastungen Planfall 2	36
Abbildungsverzeichnis	
Abbildung 1: Regionales Strassennetz Modell Validate	3
Abbildung 2: Detailliertes Strassennetz Kernstadt	4
Abbildung 3: Verkehrsbefragung 02. Juli 2009	5
Abbildung 4: Verkehrszelleneinteilung Kernstadt Singen und Region	5
Abbildung 5: Ausschnitt Gesamtnetz	6
Abbildung 6: Übersicht der Vergleichsquerschnitte	9
Abbildung 7: Typische Tagesganglinien	11
Abbildung 8: Besetzungsgrade	13
Abbildung 9: Fahrtzweck-Analyse	15
Abbildung 10: Entwicklung der Gesamtfahrleistung in Deutschland	17
Abbildung 11: Verkehrsmengenkarte 2005 Baden-Württemberg (Ausschnitt)	18
Abbildung 12: Gesamtfahrleistung nach Verkehrszusammensetzung	20
Abbildung 13: Strassenräumliche Nutzungsansprüche	22
Abbildung 14: Bevölkerungsentwicklung Landkreis Konstanz, Stadt Singen (Quelle: Stat. Landes: B-W)	amt 23
Abbildung 15: Einwohnerentwicklung Singen (Quelle: Häusser 2008)	24
Abbildung 16: Vergleichsfall 2025 DTV: Belastungsspinne Nordstadtanbindung	34

Beilagenverzeichnis

1	Zählstellenplan
2	Radverkehrszählung
3	Zählung Juni/Juli 2009
3.1	Tagesverkehr Juni/Juli 2009
3.2	Abendspitze Juni/Juli 2009
4	Analysefall 2009
4.1	Gesamtverkehr DTV 2009
4.2	Durchgangsverkehr DTV 2009
4.3	Belastungsspinne L191 Hohenkrähenstrasse DTV 2009
4.4	Belastungsspinne Knoten B34/B314 DTV 2009
4.5	Belastungsspinne Knoten B34/L220 DTV 2009
4.6	Belastungsspinne B34 Innenstadt
4.7	Gesamtverkehr AS 2009
5	Vergleichsfall 2025
5.1	Gesamtverkehr DTV 2025
5.2	Gesamtverkehr DTV 2025: Differenz zu Analysefall 2009
5.3	Gesamtverkehr AS 2025
5.4	Gesamtverkehr AS 2025: Differenz zu Analysefall 2009
6	Planfall 1 2025
6.1	Gesamtverkehr DTV 2025
6.2	Gesamtverkehr DTV 2025: Differenz zu Vergleichsfall 2025
6.3	Gesamtverkehr AS 2025
6.4	Gesamtverkehr AS 2025: Differenz zu Vergleichsfall 2025
7	Planfall 2 2025
7.1	Gesamtverkehr DTV 2025
7.2	Gesamtverkehr DTV 2025: Differenz zu Vergleichsfall 2025
7.3	Gesamtverkehr AS 2025
7.4	Gesamtverkehr AS 2025: Differenz zu Vergleichsfall 2025

Projektleitung und Sachbearbeitung

Dipl. Ing. Wolfgang Wahl

Dipl. Ing. Michael Witzel

Dipl. UWIS Lea Horowitz

1 Ausgangssituation und Aufgabenstellung

Im Zusammenhang mit der Erarbeitung des Innenstadtentwicklungskonzepts 2020 und weiterer kommunaler Planungsvorhaben¹ wird der Generalverkehrsplan der Stadt Singen² fortgeschrieben.

Das bisherige Verkehrsmodell, das letztmalig in den Jahren 1999-2002 aktualisiert wurde, basierte auf Befragungsdaten aus 1988. Für die anstehenden Aufgabenstellungen, wie z.B. die verkehrliche Machbarkeitsprüfung der Vorschläge zur Neuordnung des innerstädtischen Verkehrssystems ist jedoch eine umfassend aktualisierte und fachlich belastbare Datengrundlage zwingend erforderlich.

Das Innenstadtentwicklungskonzept³ empfiehlt als vordringliches Projekt die Erarbeitung eines innerstädtischen Verkehrsgutachtens, "das einerseits die Fakten, wie zum Beispiel die Belastung der einzelnen Strassenabschnitte, die Wegeverbindungen im innerstädtischen Kontext oder die Emissionen an den Hauptverkehrsstrassen, andererseits aber auch die technischen Rahmenbedingungen, wie zum Beispiel die Strassenbreiten, die Ein- und Ausfahrsituationen oder die Möglichkeiten der Verkehrslenkung, genauer untersucht."

Die notwendige planerische und rechtliche Abwägung der diskutierten verkehrlichen Veränderungen erfordert gleichfalls die Bereitstellung aktueller Bestands- und Prognosedaten des lokalen und regionalen Verkehrsaufkommens.

Ziel der Untersuchungen ist eine objektivierte Zustandsbewertung der lokalen Verkehrsstrukturen, die eine fachlich fundierte, zukunftsorientierte Entscheidung der politischen Gremien und Fachorgane zu allen verkehrsrelevanten Aspekten der Stadtentwicklung ermöglicht.

Der vorliegenden Untersuchung, mit der die Rapp Trans AG, Basel im April 2009 beauftragt wurde, liegt eine thematische Konzentration auf die Bestandsanalyse und modelltechnische Wirkungsprognose verkehrsbeeinflussender Massnahmen zugrunde. Eine wesentliche Grundlage der Untersuchungen ist die Erstellung eines Verkehrsmodells für den motorisierten Individualverkehr und Schwerverkehr der Gesamtstadt mit einer maximalen Abbildungsgenauigkeit der Innenstadt. Das Prognosemodell soll sowohl der Untersuchung von Fragen der gesamtstädtischen Verkehrslenkung als auch der innerstädtischen Verkehrskonzeption dienen.

2 Grundlagen und Methodik

2.1 Aufgabe, Zielsetzungen

Mit Hilfe der Verkehrserhebungen und verkehrstechnischen Modellierungen sollen die anstehenden Planungen von Verkehrsanlagen wie auch siedlungsstrukturelle Veränderungen bewertet sowie Hinweise für eine zielgerichtete Verkehrsentwicklung erarbeitet werden. Gleichfalls kann das zu erstellende Verkehrsmodell für unterschiedlichste Aufgaben der Stadt-, Umwelt- und Verkehrsplanung eingesetzt

¹ z.B. gemäss Entwurf Flächennutzungsplan 2020 der Vereinbarten Verwaltungsgemeinschaft Singen, Rielasingen-Worblingen, Steißlingen und Volkertshausen; Abteilung Stadtplanung; 2007

² Fachbereich Planen, Bauen & Umwelt, Abteilung Strassenbau

³ Innenstadtentwicklungskonzept Singen 2020; Fahle Stadtplaner; Stand Juli 2008

werden, wie z.B. zur optimierten Umleitungsplanung bei kurzfristigen Tiefbauarbeiten mit Sperrung des Strassenraums oder als Grundlage einer Lärmaktionsplanung.

Aufgabenschwerpunkt:

Die aktuell anstehenden Aufgaben zur Fortschreibung des GVP beinhalten vorrangig die Erstellung eines qualifizierten Verkehrsmodells auf der Grundlage aktueller Verkehrs- und Strukturanalysen. Verkehrskonzeptionelle Leistungen sind vorläufig nur insoweit gefordert, als dass die bestehenden Fachplanungen und Konzeptionen verkehrlich zu werten sind (ggf. Optimierungsvorschläge).

Verkehrsarten:

Das Verkehrsmodell soll die Verkehrsnachfrage im MIV (Motorisierter Individualverkehr) und Schwerverkehr (>3.5t) beinhalten. ÖPNV und nichtmotorisierter Individualverkehr werden nicht modelliert, da die Erstellung eines Gesamtverkehrsmodells mit der Modellstufe "Verkehrsmittelwahl" zeitlich und wirtschaftlich nicht vertretbar erscheinen.

Verkehrszeiten:

Die Nachfragemodellierung erfolgt differenziert für den Gesamttag (DTV⁵) sowie für die werktägliche abendliche Spitzenstunde (DWV-ASP)⁶ als Grundlage der verkehrstechnischen Dimensionierungen.

Verkehrsprognose:

Der FNP weist neue Flächen aus. Die zu erwartenden Siedlungsstrukturellen Entwicklungen wie auch die allgemeine Mobilitätsentwicklung werden Verkehrszuwächse des Gesamtverkehrs, aber insbesondere auch des Güterverkehrs zur Folge haben. Die Verkehrsuntersuchung soll diese Verkehrszunahmen quantifizieren. Da für diese Aufgabe eine auf den aktuellen Analysen basierende Trendprognose nicht ausreichend ist, wird eine verkehrszellenfeine Strukturprognose unter Berücksichtigung der Kennwerte Einwohner-, Arbeitsplatz- und Verkaufsflächenentwicklung erarbeitet.

2.2 Methodik Verkehrsmodell

Ziel ist die Erstellung eines Verkehrsmodells für MIV (Motorisierter Individualverkehr) und SV (Schwerverkehr > 3.5 t) der Gesamtstadt mit einer maximalen Abbildungsgenauigkeit der Kernstadt. Das Prognosemodell soll sowohl der Untersuchung von Fragen der gesamtstädtischen Verkehrslenkung als auch der innerstädtischen Verkehrskonzeption dienen.

Vor diesem Hintergrund erfolgt eine Modellerstellung mit drei integrierten Analyseebenen, welche im vorgegebenen wirtschaftlichen Rahmen die bestmögliche Modellqualität bietet:

Regionalmodell auf der Basis einer verfügbaren deutschlandweiten Modellierung

 $^{^6}$ DWV = <u>D</u>urchschnittlicher <u>W</u>erktags<u>v</u>erkehr, ASP = <u>A</u>bend<u>sp</u>itze. Die Verkehrszählungen der Stadt Singen zeigen, dass die Abendspitze i.A. gegenüber der Vormittagsspitze dominiert.

⁴ Modelltechnische Berechnung des Modal Split, mit dessen Hilfe z.B. die verkehrserzeugende bzw. verlagernde Wirkung von Angebotsverbesserungen des ÖV quantifiziert werden kann.

⁵ DTV = <u>D</u>urchschnittlicher <u>T</u>äglicher <u>V</u>erkehr

- Quell-Ziel-Analyse der auf die Kernstadt bezogenen Verkehre durch Verkehrsbefragung
- Abschätzung der Binnenverkehre durch umfangreiche innerstädtische Verkehrszählungen

Eine eigenständige Verkehrserhebung mit Befragungen ist im übergeordneten, regionalen Strassennetz allein aus Gründen der Verkehrssicherheit und Wirtschaftlichkeit nicht machbar. Als Grundgerüst des gesamtstädtischen Modells einschliesslich der BAB A98, A81 und B33 dient daher der Ausschnitt eines verfügbaren, nationalen Verkehrsmodells mit differenzierten Nachfragedaten für Pkw und Lkw.

Das Verkehrsmodell "PTV Validate", PTV AG Karlsruhe ist mit 1,4 Mio. Strecken und fast 10.000 Verkehrsbezirken das derzeit grösste Verkehrsmodell der Welt. Durch den Modellansatz können auf einfache Art und Weise Szenarien und unterschiedliche Entwicklungen simuliert werden. Die Grundlage des Netzmodells Validate bilden Navigationsnetze von NAVTEQ (Stand 4. Quartal 2008).

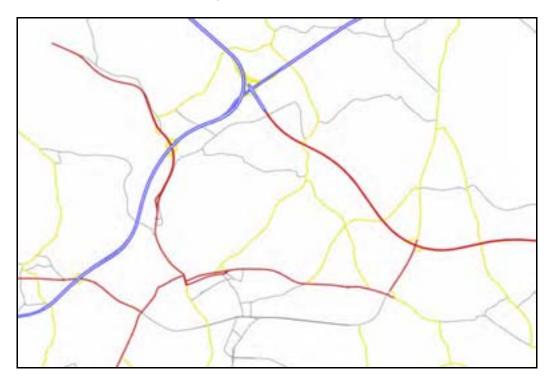


Abbildung 1: Regionales Strassennetz Modell Validate

Innerhalb der Kernstadt werden das Strassennetz (Verkehrsangebot) und die Fahrtenmatrizen (Verkehrsnachfrage) verfeinert. Das Strassennetz wird einer Modelladaption des detaillierten Navigationsnetzes NAVTEQ mit den verkehrlichen Kenngrössen, wie Basis-Geschwindigkeit und Kapazität/Fahrstreifen entnommen. Dieser "innere Studienperimeter" entspricht in etwa dem Befragungskordon aus Beilage 1.

Abbildung 2: Detailliertes Strassennetz Kernstadt

2.3 Verkehrsbefragung

Die Quell-/Zielverkehre wurden in einer normalwerktäglichen Verkehrsbefragung erfasst und anhand von Vergleichszählungen auf Tages-Werte hochgerechnet. An den 12 Befragungsstellen (vgl. Beilage 1) wurde jeweils der einströmende Verkehr erhoben. Der Durchgangs- und Zielverkehr wird damit vollständig erfasst; der Quellverkehr wird durch eine "Spiegelung" des Zielverkehrs modelltechnisch generiert.

Der in der Kordonbefragung nicht erfasste Binnenverkehr der Kernstad \mathbf{t}^7 wird anhand umfangreicher Zähldaten direkt abgeschätzt.

Die Verkehrsbefragung fand am Donnerstag, den 2. Juli 2009 statt. Aufgrund eines unvorhergesehenen, externen Polizeieinsatzes musste die Befragung nach Abschluss des vormittäglichen Intervalls 6-10 h abgebrochen werden. Die nachmittägliche Erhebung 15 – 19 h wurde daraufhin am 16. Juli 2009 durchgeführt.

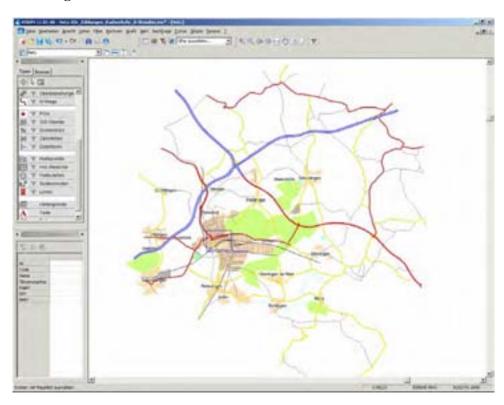
 $^{^{7}}$ D.h. Verkehr mit Quelle und Ziel innerhalb der Kernstadt

Abbildung 3: Verkehrsbefragung 02. Juli 2009

Bei der Verkehrsbefragung wurde erhoben:

- Fahrzeug-Typ (Kraftrad, Pkw, Lkw/Lastzug/Bus)
- Quelle und Ziel der Fahrt (letzter/nächster Halt)
- Besetzung (Anzahl Personen im Fahrzeug)
- Fahrtzweck (zur Arbeit, Schule/Ausbildung, Beruflich, Einkauf, Freizeit, zur Wohnung)

Für die Quell-/Ziel-Auswertung wurde das Modellgebiet in Verkehrszellen unterteilt. Die Kernstadt beinhaltet 43 Zellen; der Aussenperimeter wurde in 45 Zellen unterteilt, welche mit zunehmender Distanz grösser werden. Somit ergibt sich eine Beziehungsmatrix mit 88 * 88 = 7'744 Relationen.


Abbildung 4: Verkehrszelleneinteilung Kernstadt Singen und Region

2.4 Verkehrszählungen

Innerhalb des Befragungskordons wird das Verkehrsmodell anhand umfassender Zählungen kalibriert. An 48 Strassenquerschnitten und Knotenpunkten wurden die Verkehrsbelastungen nach Fahrzeugarten differenziert am Donnerstag, den 25. Juni und 2. Juli erhoben (vgl. Beilage 1). Ergänzend wurden Verkehrsmengen über LSA-Detektoren an 13 Knotenpunkten erfasst. Die manuellen Erhebungen wurden in den Zeiten 6-10 und 15-19 Uhr durchgeführt; die automatischen Erhebungen wurden über 24 Stunden ausgewertet.

2.5 Studienperimeter

Der Studienperimeter ist im Wesentlichen durch die Aufgabenstellung vorgegeben. Da die Grundlage der Verkehrsmodellierung ein frei wählbarer Ausschnitt des Verkehrsmodells Validate ist, wird der Ausschnitt hinreichend umfassend konzipiert, sodass sowohl Wirkungen kommunaler Massnahmen auf das umliegende Netz als auch Auswirkungen regionaler Planungen auf die kommunalen Verkehrsstrukturen abgebildet werden.

Abbildung 5: Ausschnitt Gesamtnetz

Die Streckenbelastungspläne des Verkehrsmodells werden jeweils in zwei Ausschnitte (Gesamtstadt und Innenstadt) unterteilt.

2.6 Inhaltliche Abgrenzungen, optionale Ergänzungen

Die aktuellen Fragestellungen betreffen primär Angebots- und Nachfragestrukturen des Motorisierten Individualverkehrs (MIV). Die beauftragte Studie beschränkt sich daher im Wesentlichen auf Analysen und Prognosen des motorisierten Güter- und Personenverkehrs. In den Verkehrszählungen wurden jedoch der Fahrradverkehr mit erhoben und entsprechend ausgewiesen / dargestellt.

Eine integrierte Verkehrsentwicklungsplanung beinhaltet gleichgewichtig zu MIV auch die Verkehre des Umweltverbunds (ÖPNV Schiene und Strasse, Zweiradverkehr, Fussverkehr) sowie den ruhenden Verkehr. Bestandsanalysen, Konzeptionen und Planungen für den öffentlichen und nichtmotorisierten Verkehr können bei Bedarf in einer zweiten Stufe bearbeitet werden.

Die vorliegende Studie beinhaltet auch noch keine differenzierten Leistungsfähigkeitsnachweise z.B. zur innerstädtischen Verkehrskonzeption, da sich das erforderliche Arbeitsprogramm im aktuellen Projektstadium noch nicht hinreichend genau quantifizieren lässt.

3 Verkehrsanalyse 2009

3.1 Radverkehr

Die Bedeutung des Radverkehrs innerhalb des gesamten Verkehrsgeschehens einer Stadt ist heute unbestritten. Diese flächen- und ressourcensparende Fortbewegungsart entspricht in vieler Hinsicht den Zielen einer umweltorientierten Verkehrsentwicklungsplanung.

Besonders im Nah- und Kurzstreckenverkehr ist die Konkurrenzfähigkeit des Fahrrades gegenüber dem Kfz nachgewiesen und lässt eine verstärkte Radverkehrsplanung als sinnvoll und notwendig erscheinen. Obwohl durch den Radverkehr im Wesentlichen nur zeitlich und örtlich begrenzte Reduzierungen im Kfz-Verkehr zu erreichen sind (ein Grossteil der Zuwächse im Radverkehr entsteht durch Verlagerungen vom Fussgängerverkehr und ÖPNV sowie durch eine Mobilitätssteigerung beim Radverkehr selbst) ist vor allem aus Umweltgründen eine Veränderung des Modal Split (Verkehrsmittelwahl) zu Gunsten des Rades wünschenswert.

Die Benutzung des Fahrrades wird von objektiven und subjektiven Entscheidungskriterien beeinflusst.

- Die Witterungsverhältnisse bestimmen für die Mehrzahl der potentiellen Radverkehrsteilnehmer die aktuelle Disposition.
- Die topographischen Voraussetzungen sind in Singen vergleichsweise günstig. Die meisten Strecken sind ohne grössere körperliche Anstrengungen zu bewältigen.
- Ein möglichst dichtes, lückenloses Radverkehrsnetz bietet eine hohe Attraktivität. Es sollte die Haupt- und Nebenstrecken aufnehmen.
- Die einzelnen Streckenelemente im Radverkehrsnetz sollen zusammenhängende Radverkehrsrouten bilden, die es sowohl dem Alltags- als auch den Freizeitfahrer ermöglichen, die gewünschten Ziele verkehrssicher, ohne Umweg und auf gut befahrbaren Wegen zu erreichen.
- An den Start- und Zielorten des Radverkehrs sollen radverkehrsgeeignete Abstelleinrichtungen das infrastrukturelle Angebot komplettieren.

Die im Rahmen der Verkehrszählung im Juni/Juli 2009 erhobenen Radverkehrsbelastungen können Beilage 2 entnommen werden. Auf eine Hochrechnung der 2 x 4h-Belastungen auf Tageswerte wurde hierbei verzichtet.

Es ist zu berücksichtigen, dass Teile des Schülerverkehrs zwischen 10:00 Uhr und 15:00 Uhr nicht erfasst wurden. Eine Quantifizierung der Radverkehrsbelastungen ist nur im Vergleich der einzelnen Strecken sinnvoll, da das Gesamtverkehrsaufkommen in Abhängigkeit vor allem der Witterungsverhältnisse stark variiert. Die Erhebungstage waren sonnig und warm, so dass die erhobenen Radverkehrsmengen tendenziell im oberen Bereich des Belastungsspektrums liegen dürften.

In den Belastungsplänen werden an einzelnen Stellen erhebliche Richtungsungleichgewichte oder Belastungssprünge ermittelt. Die Richtungsungleichgewichte lassen sich durch die Zählzeiten, Einbahnstrassensysteme oder auch Fahrten auf Radwegen in Gegenrichtung erklären.

In der Innenstadt werden die höchsten Belastungen im Zuge der Hauptstrasse, der Bahnhofstrasse, der Romeiastrasse und der Schlachthausstrasse registriert. Hieraus wird die Trennwirkung der Bahnlinie mit einer entsprechenden Bündelung der Radverkehrsströme auf wenige Querungsmöglichkeiten ersichtlich.

Am Mittwoch, den 7. Oktober 2009 wurde von der Stadtverwaltung eine gesonderte Radverkehrszählung zwischen 12 und 18 h durchgeführt. An einzelnen Zählstellen wurden die Belastungen zwischen 15 und 18 h mit den Erhebungen vom Juni/Juli verglichen, wobei teilweise erhebliche Differenzen mit unterschiedlicher Tendenz festgestellt wurden.

3.2 Motorisierter Individualverkehr

Der motorisierte Individual- und Güterverkehr weist in Singen wie andernorts auch den grössten Anteil an der städtischen Verkehrsleistung auf. Neben dem unbestreitbaren grossen Nutzen verursacht der MIV aber auch negative Wirkungen auf die Umwelt und die Verkehrssicherheit, da er pro beförderte Person wesentlich mehr Verkehr, eine höhere Umweltbelastung und einen höheren Flächenverbrauch verursacht.

Der MIV verursacht somit erhebliche externe Kosten, welche nicht direkt vom Nutzer zu tragen sind:

- Strassenbaukosten, Strassenerhaltungskosten
- Folgekosten der Umweltverschmutzung durch den MIV
- Flächenverbrauchskosten
- Grundstücksnettoentwertungskosten
- Einschränkung der Mobilität der nicht motorisierten Verkehrsteilnehmer
- Unfallfolgekosten

Ziel der städtischen Verkehrsplanung muss es sein, die gesamtverkehrliche Erreichbarkeit der Stadt zu bewahren und zu verbessern. Die spezifischen Vorteile der einzelnen Verkehrsträger sollen dabei so miteinander verknüpft werden, dass eine effiziente, umwelt- und sozialverträgliche (nachhaltige) Mobilität gefördert wird.

3.2.1 Tagesbelastungen

Die manuell gezählten Belastungen des MIV werden anhand der verfügbaren Dauerzählstellen (LSA-Knoten mit Induktionsschleifen oder Infrarot-Detektoren) auf Tagesbelastungen hochgerechnet:

• 2*4 Std.-Zählung (6 – 10 h, 15 – 19 h) * **2.04** = 24 h Tagesbelastung

Die plausibilisierten Tagesverkehrsbelastungen können im Einzelnen den Streckenbelastungsplänen in Beilage 3.1 entnommen werden.

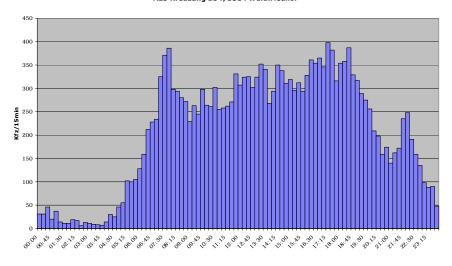
Für ausgewählte Streckenquerschnitte werden die Absolutbelastungen Kfz/24h und SV/24h sowie die prozentualen Schwerverkehrsanteile in Tabelle 1 ausgewiesen. Abbildung 6 zeigt eine Übersicht der Vergleichsquerschnitte.

Abbildung 6: Übersicht der Vergleichsquerschnitte

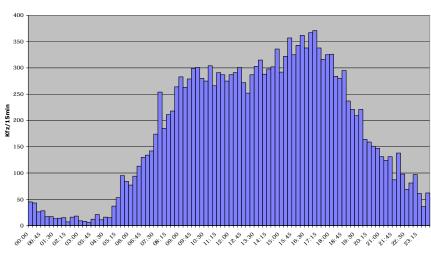
Quer- schnitt	Zähl- stelle	Befr Stelle	Strasse	Name	Kfz/24h	SV/24h	SV-Anteil
1	Z25/A25	B1	B314	Hilzinger Straße	19'481	995	5%
2	Z25/A25	B2	B34	Schaffhauser Straße	14'128	667	5%
3	Z33	В3	L191	Singener Straße (R-W)	11'039	299	3%
4	Z35	B4		Berliner Straße	13'968	682	5%
5	Z36	В5	K6157	Überlinger Straße	4'325	76	2%
6	Z31	В6		Georg-Fischer-Straße	17'646	1'959	11%
7	Z24	В7	B34	Radolfzeller Straße	14'504	623	4%
8	Z22	В8	K6164	Waldheimsiedlung	5'912	212	4%
9	Z3	В9	L189	Friedlinger Straße	5'117	245	5%
10	Z1	B10	L191	Hohenkrähenstraße	19'297	613	3%
11	Z20	B11		Remishofstraße	2'977	579	19%
12	A4/Z4		L191	Hohenkrähenstraße	21'465	716	3%
13	A4/Z4		B34	Schaffhauser Straße	15'811	445	3%
14	Z8		B34	Freiheitstraße	9'223	324	4%
15	Z12		B34	Ekkehardstraße	9'619	196	2%
16	Z38		B34	Radolfzeller Straße	12'793	284	2%
17	Z16/A16			Romeiasstraße	21'858	889	4%
18	Z16/A16			Bahnhofstraße	11'688	716	6%
19	Z19/A19			Bahnhofstraße	11'871	636	5%
20	Z19/A19		L191	Rielasinger Straße	20'159	503	2%
21	Z20			Güterstraße	8'034	658	8%
22	A66/Z25			Münchriedstraße	13'551	672	5%
23	Z40			Pfaffenhäule	10'633	1'181	11%

Tabelle 1: Tagesgesamt- und Schwerverkehrsbelastungen der Zählung 2009

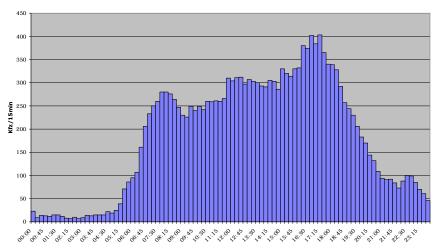
Die höchsten Belastungen an den Zähltagen im Juni/Juli 2009 werden mit 28'450 Kfz/24h auf der B34 / L191 Hauptstrasse zwischen Schaffhauser Strasse und Freiheitstrasse ermittelt. Belastungen über 20'000 werden gleichfalls auf der L191 Hohenkrähenstrasse und der Romeiastrasse ermittelt.


Querschnittbelastungen zwischen 15'000 und 20'000 Kfz/24h ergeben sich auf der B314 Hilzinger Strasse – Georg-Fischer-Strasse, der B34 Schaffhauser Strasse und Radolfzeller Strasse sowie auf der Hauptstrasse in Rielasingen. Freiheitstrasse und Ekkehardstrasse sind jeweils mit durchschnittlich 10'000 Kfz/24h belastet.

3.2.2 Spitzenstundenbelastungen


Wie den folgenden Tagesganglinien von Knotenpunkten unterschiedlicher Stadtbereiche (Stadtrand, Zentrum, Gewerbe) entnommen werden kann, ist die nachmittägliche Verkehrsspitze zum einen erheblich breiter und zum anderen oftmals stärker als die Morgenspitze.

Die abendliche Spitzenbelastung beträgt i.a. zwischen 8 und 9 Prozent der Tagesbelastung Kfz/24h. Die Belastungswerte können im Einzelnen der Beilage 3.2 entnommen werden.



A68 Bahnhofstr./Erzberger Str.

 ${\bf A69~Georg\text{-}Fischer\text{-}Str./Gaisenrainstr.}$

Abbildung 7: Typische Tagesganglinien

Die abendliche Spitzenstunde wird an der Mehrzahl der Knoten zwischen 16:30 h und 17:30 h ermittelt. In den Zählungsauswertungen und der nachfolgenden Modellierung des abendlichen Spitzenverkehrs werden jedoch die gleitenden nachmittäglichen Spitzenbelastungen der einzelnen Zählstellen dargestellt.

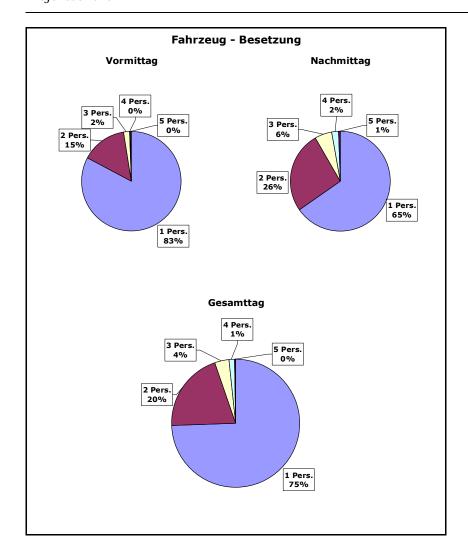

Quer- schnitt	Strasse	Name	Zählung Kfz ASP	ASP- Anteil Kfz	Zählung SV ASP	ASP- Anteil SV
1	B314	Hilzinger Straße	1650	8%	46	5%
2	B34	Schaffhauser Straße	1173	8%	36	5%
3	L191	Singener Straße (R-W)	882	8%	11	4%
4		Berliner Straße	1186	8%	35	5%
5	K6157	Überlinger Straße	358	8%	5	7%
6		Georg-Fischer-Straße	1483	8%	117	6%
7	B34	Radolfzeller Straße	1124	8%	32	5%
8	K6164	Waldheimsiedlung	533	9%	10	5%
9	L189	Friedlinger Straße	431	8%	21	9%
10	L191	Hohenkrähenstraße	1559	8%	42	7%
11		Remishofstraße	278	9%	k.A.	
12	L191	Hohenkrähenstraße	1797	8%	42	6%
13	B34	Schaffhauser Straße	1388	9%	18	4%
14	B34	Freiheitstraße	937	10%	15	5%
15	B34	Ekkehardstraße	828	9%	8	4%
16	B34	Radolfzeller Straße	985	8%	17	6%
17		Romeiasstraße	1750	8%	34	4%
18		Bahnhofstraße	951	8%	26	4%
19		Bahnhofstraße	1001	8%	33	5%
20	L191	Rielasinger Straße	1642	8%	k.A.	
21		Güterstraße	739	9%	34	5%
22		Münchriedstraße	564	4%	k.A.	
23		Pfaffenhäule	875	8%	60	5%

Tabelle 2: Abendspitzengesamt- und Schwerverkehrsbelastungen der Zählung 2009

3.2.3 Besetzungsgrade

Im Rahmen der Verkehrsbefragung wurde auch die Anzahl der Fahrzeuginsassen erhoben. Es ergaben sich folgende durchschnittlichen Pkw-Besetzungsgrade:

Vormittag 06 – 10 h: 1.21 Pers./Pkw
 Nachmittag 15 – 19 h: 1.46 Pers./Pkw
 Gesamttag / Mittelwert: 1.33 Pers./Pkw

Abbildung 8: Besetzungsgrade

Lt. MiD 03^8 sind 26% der Personen, die für ihren Wegzweck einen Pkw verwendet haben, Mitfahrer. Das entspricht durchschnittlich 1,35 Personen pro Fahrt (ungewichteter Besetzungsgrad). Dieser Wert ist relativ regions- bzw. stadtunabhängig.

Weitere ungewichtete Besetzungsgrade lassen sich nach MiD 03 berechnen für

- den Berufsverkehr 1,1,
- Freizeitaktivitäten mit 1,61,
- den Fahrtweck Schule/Ausbildung mit 2,27 und
- Wochenendfahrten mit 1,69

Die in Singen erhobenen Pkw-Besetzungsgrade zeigen somit keine Besonderheiten auf. Am Vormittag dominiert der Berufsverkehr, wohingegen am Nachmittag ein stärkerer Einfluss durch Freizeit und Einkaufsverkehre zu verzeichnen ist.

⁸ Mobilität in Deutschland, Erhebung 2003; DIW Forschungsbereich Verkehr, infas Institut für angewandte Sozialwissenschaft

Der Durchschnitt über alle Fahrten in Singen beträgt 1,33 Pers./Pkw gegenüber 1,35 als Durchschnitt in Deutschland.

3.2.4 Fahrtzweck

Neben Fahrtursprung und –ziel wurden die Verkehrsteilnehmer nach dem Fahrtzweck befragt. Mögliche Antworten waren:

- zur Arbeit
- Schule, Ausbildung
- Beruflich, Geschäft
- Einkauf, Arzt
- Freizeit, Besuch
- zur Wohnung
- Sonstiges, keine Auskunft

Die Erhebung des Fahrtzwecks ergibt erwartungsgemäss am Vormittag eine Dominanz von Fahrten zur Arbeit (60%). Am Nachmittag 15-19 h werden überwiegend Rückfahrten zur Wohnung (33%), Freizeitverkehre (23%) und Einkaufsfahrten (18%) ermittelt.

Eine Vergleichbarkeit mit überregionalen Erhebungen ist nur eingeschränkt gegeben, da die Erhebung von Fahrtzwecken vielfach nach unterschiedlichen Methoden und Auswahloptionen erfolgt. In der MiD 2002⁹ wird für MIV-Selbstfahrer ohne Berücksichtigung der Rückfahrten zur Wohnung folgende Fahrtzweck-Verteilung angegeben:

•	Freizeit	23%
•	Arbeit	22%
•	Einkauf	18%
•	Dienstlich / Geschäftlich	16%
•	Private Erledigungen	12%
•	Begleitung	8%
•	Ausbildung	1%

 $^{^9}$ Mobilität in Deutschland 2002; DIW Forschungsbereich Verkehr, infas Institut für angewandte Sozialwissenschaft; 2002/04

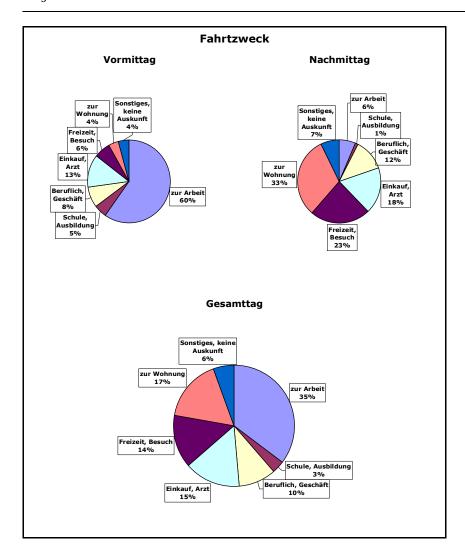


Abbildung 9: Fahrtzweck-Analyse

3.3 Verkehrsentwicklung

Zur Analyse der Verkehrsentwicklung der letzten Jahre stehen folgende Untersuchungen und Erhebungen zur Verfügung:

- Stadt Singen, Gemeinde Rielasingen-Worblingen, Aktualisierung der Verkehrsuntersuchung Singen und Rielasingen-Worblingen, Dorsch Consult, April 2004
- Strassenbauverwaltung Baden-Württemberg, Verkehrsstärkenkarte 2005, herausgegeben 2007

Die kommunale Untersuchung aus dem Jahr 2004 beinhaltet die Ergebnisse einer Modellrechnung für den so genannten Analysefall 1999. Dieser Analysefall basiert auf Verkehrszählungen, die als solche jedoch nicht abgebildet sind. Daher werden in der folgenden Tabelle Ergebnisse einer Modellrechnung mit den auf Tagesbelastungen hochgerechneten Zähldaten der Analyse 2009 verglichen, was bei der Interpretation der Differenzen zu berücksichtigen ist.

Quer- schnitt	Strasse	Name	Analyse- fall 1999 Kfz/24h	Zählung 2009 Kfz/24h	Differenz 09/99
1	B314	Hilzinger Straße	k.A.	19'481	
2	B34	Schaffhauser Straße	k.A.	14'128	
3	L191	Singener Straße (R-W)	13'158	11'039	-16%
4		Berliner Straße	13'758	13'968	+2%
5	K6157	Überlinger Straße	4'580	4'325	-6%
6		Georg-Fischer-Straße	14'799	17'646	+ 19%
7	B34	Radolfzeller Straße	16'839	14'504	-14%
8	K6164	Waldheimsiedlung	3'021	5'912	+96%
9	L189	Friedlinger Straße	4'766	5'117	+ 7%
10	L191	Hohenkrähenstraße	16'746	19'297	+ 15%
11		Remishofstraße	2'693	2'977	+11%
12	L191	Hohenkrähenstraße	20'394	21'465	+ 5%
13	B34	Schaffhauser Straße	16'020	15'811	-1%
14	B34	Freiheitstraße	10'050	9'223	-8%
15	B34	Ekkehardstraße	9'657	9'619	-0%
16	B34	Radolfzeller Straße	12'401	12'793	+3%
17		Romeiasstraße	21'043	21'858	+4%
18		Bahnhofstraße	k.A.	11'688	
19		Bahnhofstraße	14'873	11'871	-20%
20	L191	Rielasinger Straße	22'239	20'159	-9%
21		Güterstraße	4'810	8'034	+67%
22		Münchriedstraße	10'878	13'551	+ 25%
23		Pfaffenhäule	9'850	10'633	+8%

Tabelle 3: Belastungsvergleich 1999 / 2009

Im Mittel aller Vergleichsquerschnitte ergibt sich ein Belastungszuwachs um 3.0 % innerhalb von 10 Jahren. Es zeigen sich jedoch erhebliche Streuungen die sowohl durch lokale Veränderungen als auch durch den Vergleich der Modellrechnung mit Zähldaten zu erklären sind.

Im Vergleich zum Bundesstrend liegt die mittlere Verkehrszunahme in Singen nur geringfügig tiefer. Für den Zeitraum 1999 – 2007 ergab sich eine Zunahme der Gesamtfahrleistung in Deutschland um 3.4~%.

Im gleichen 8-Jahres-Zeitraum 1999 – 2007 nahm der Kfz-Bestand im Landkreis Konstanz um 12% zu 10 . Diese Entwicklungsdifferenz ist zum einen durch allgemein abnehmende Fahrleistungen je Pkw 11 und zum anderen durch die überproportionale demographische und wirtschaftliche Entwicklung der Region zu erklären.

¹⁰ http://www.statistik-bw.de/srdb/Tabelle.asp?10023022GE335075

¹¹ Verursacht durch den zunehmenden Anteil von Zweitfahrzeugen

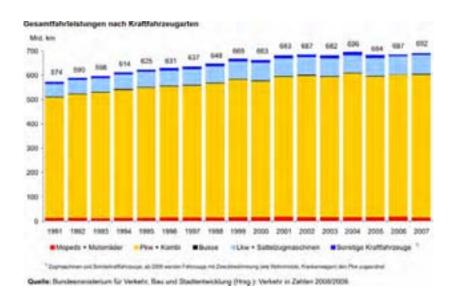


Abbildung 10: Entwicklung der Gesamtfahrleistung in Deutschland

Auch der Vergleich mit der amtlichen Strassenverkehrszählung zeigt unterschiedliche Entwicklungstendenzen an den jeweiligen Vergleichsquerschnitten auf. Für die Erhebung der SVZ 2005 wurden jeweils die DTV-Werte wie auch die DTV-W Belastungen¹² angegeben. Tendenziell entsprechen die DTV-W Belastungen besser den an Werktagen erhobenen Zähldaten 2009.

Zählstelle SVZ '05	Zähl- stelle Rapp	Strasse	Name	Zählung 2009	Analyse- fall 1999	DTV_2005	DTVw_2005
8218 1107	Z1	L191	A81-Zubringer Hohenkrähenstrasse	18'277	15'437	14'734	15'776
8219 1200	Z3	L189	Friedinger Strasse	5'117	4'766	4'095	k.A.
8218 1106	Z4/A4	B34	Schaffhauser Straße bei Hegau-Klinik	15'811	16'020	11'689	12'318
8219 1102	Z8	B34	Freiheitstraße	9'223	10'050	7'977	8'527
8219 1103	Z12	B34	Ekkehardstraße	9'619	9'657	8'727	9'610
8219 1203	Z22	K6164	K6146 Waldheimsiedlung	5'912	3'021	5'634	k.A.
8219 1100	Z24	B34	B34 bei EKZ	14'504	16'839	11'878	13'061
8218 1102	Z25/A25	B34	Schaffhauser Straße bei Waldfriedhof	14'128	k.A.	11'410	12'330
8219 1204	Z31	L223	nach Überlingen a.R.	5'683	4'920	3'668	4'006
8219 1206	Z33	L191	Rielasinger Strasse	11'039	13'158	11'050	k.A.
8219 1104	Z38	B34	Radolfzeller Straße	12'793	12'401	12'137	13'472
8218 1400	Z1	K6125	Duchtlinger Strasse	2'142	2'079	1'688	1'698

Tabelle 4: Belastungsvergleich 1999 / 2005 / 2009

 $^{^{\}rm 12}$ DTV-W: Durchschnittlicher werktäglicher Verkehr Mo. – Fr.

Im Mittel ergibt sich im Vergleich von DTV-W 2005 und Zählung 2009 eine Zunahme um 16%. Die stärkste Zunahme wird auf der L223 Überlingen am Ried mit +42% ermittelt. Nur an einer Zählstelle (B34 Radolfzeller Strasse) wird eine geringfügige Abnahme um 5 % ermittelt.

Abbildung 11: Verkehrsmengenkarte 2005 Baden-Württemberg (Ausschnitt)

3.4 Analysefall 2009

Auf der Grundlage des Strassennetzmodells sowie der mithilfe der Verkehrsbefragungen und des übergeordneten Verkehrsmodells gewonnenen Nachfragematrizen wird eine Verkehrsumlegungsberechnung (Analysefall 2009) durchgeführt.

Die Verkehrsumlegungen für Tages- und Spitzenstundenverkehre erfolgen jeweils getrennt für Pkw und Lkw, in dem die Verkehrsnachfrage sukzessiv, d.h. in mehreren Teilschritten, auf das Verkehrsnetz umgelegt wird. Es werden jeweils die zeitkürzesten Wege belegt. Die Reisezeitberechnung erfolgt in Abhängigkeit der Streckenbelastung, der Maximalgeschwindigkeit und der Streckenlänge mit Hilfe einer quadratischen Widerstandsfunktion (Capacity-Restrained-Kurve). Bei dem angewendeten kapazitätsabhängigen Umlegungsmodell werden daher nicht nur die kürzesten Wege, sondern gegebenenfalls auch konkurrierende Wege belastet.

Aufgrund der erforderlichen Vereinfachungen kann das Verkehrsmodell in einer konkreten Strasse nie die Genauigkeit einer Verkehrszählung erreichen. Das Modell liefert aber nicht nur Angaben zur Verkehrsbelastung einiger bestehender Strassen, sondern sehr viel weitergehende Informationen, die anderweitig kaum erhältlich sind. Dies sind z.B.:

• Kenntnisse über Herkunft und Ziel des Verkehrs auf einer bestimmen Strasse (= Verkehrsspinne) als Grundlage für Analysen des Durchgangsverkehrs bzw. potentieller Verkehrsverlagerungen

- Verkehrsbelastungen für alle im Modell enthaltenen Strecken und Knoten, nicht nur für einzelne Zählquerschnitte · Fahrzeiten auf Alternativrouten · Häufigkeitsverteilungen von Fahrtlängen und Reisezeiten
- Verkehrsleistungen (= Produkt aus Anzahl Fahrten und Fahrtlänge gemessen in Fahrzeugkilometer oder Personenkilometer) und weitere Kennziffern als Basis für Nutzen-Kosten Analysen

Die Beurteilung der Modellgenauigkeit erfolgt über einen Vergleich von Verkehrszählungen mit Modellresultaten auf spezifischen Strecken. Insgesamt konnte über den ganzen Modellperimeter eine mittlere Abweichung von Modell und Verkehrszählungen von weniger als 10% erreicht werden. Bei 80% bis 90% aller untersuchten Zählquerschnitte stimmen Modell und Wirklichkeit gut überein. Verbleibende Differenzen lassen sich einerseits durch lokale Vereinfachungen des Modells (insbesondere in der Nähe der Einspeisepunkte der Verkehrsnachfrage), andererseits durch spezifische, nicht berücksichtigte Eigenheiten spezieller Verkehrszonen erklären.

Aber auch die Zählresultate selber können je nach Zähldauer und Zählmethode um bis zu 20% vom tatsächlichen Jahresmittelwert abweichen. Grundsätzlich ist die (relative) Modellgenauigkeit auf stark belasteten Strassen- und ÖV-Abschnitten wesentlich besser als auf nur wenig befahrenen Strassen.

3.4.1 Gesamtverkehr DTV 2009

Zur Modellierung des Analysefalls erfolgt in einem ersten Schritt eine Umrechnung der an zwei Werktagen im Juli 2009 erhobenen Verkehrsnachfrage auf den Durchschnittlichen Täglichen Verkehr 2009. Mithilfe regional vergleichbarer Dauerzählstellen werden Faktoren für die Umrechnung von DTV-W Juli auf DTV-W Gesamtjahr sowie von DTV-W Gesamtjahr auf DTV Gesamtjahr ermittelt.

- Kfz/24 h (Werktag Juli) * 0.86 = DTV
- SV/24 h (Werktag Juli) * **0.71** = DTV

Die im Juli gezählten, und auf Tageswerte hochgerechneten Belastungen liegen somit, unabhängig von Modelleinflüssen, um durchschnittlich 16% (Kfz) und 41% (SV) über den entsprechenden DTV-Belastungen des Analysefalls 2009.

Die Ergebnisse der Umlegungsberechnung sind in Beilage 4.1 dargestellt. In den Belastungsplots für DTV werden dargestellt:

- Kfz/24 h: Strecken > 500 Kfz/24 h, auf 50 Kfz gerundet
- SV/24 h: Strecken > 50 SV/24 h, auf 10 SV gerundet

3.4.2 Verkehrszusammensetzung DTV 2009

Mithilfe des Verkehrsmodells wird eine Analyse der Fahrleistungen MIV in der Kernstadt (Befragungskordon) durchgeführt. Im Tagesverkehr DTV werden ca. 480'000 Fahrzeugkilometer in der Kernstadt gefahren.

Diese werden nur zu 7% von Durchgangsverkehr verursacht. 93% der städtischen Verkehrsbelastung ist somit als Eigenverkehr zu bezeichnen.

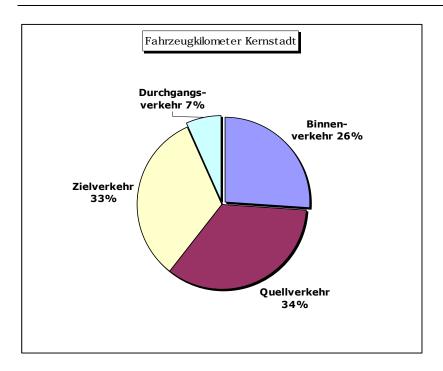


Abbildung 12: Gesamtfahrleistung nach Verkehrszusammensetzung

Die Belastungen des Durchgangsverkehrs im örtlichen Strassennetz können Beilage 4.2 entnommen werden. Als Durchgangsverkehr wird dabei aller Verkehr mit Quelle und Ziel ausserhalb der Kernstadt Singen bezeichnet. Die dargestellten Belastungen in Rielasingen-Worblingen oder Überlingen sind somit überwiegend örtliche Quell-/Zielverkehre, welche jedoch auf die Kernstadt Singen bezogen als Durchgangsverkehr gewertet werden.

Innerhalb der Kernstadt betragen die Durchgangsverkehrsbelastungen in der Georg-Fischer-Strasse ca. 700 Kfz/24h sowie in der Freiheit- und Ekkehardstrasse 1'800 Kfz/24h.

In den Beilagen 4.3 – 4.6 sind so genannte Belastungsspinnen für die Hauptzufahrtsstrassen und für den innerstädtischen Querschnitt der B34 dargestellt. Eine Belastungsspinne ermöglicht eine Analyse der Quell-/Zielorte aller über eine definierte Strecke (violette Darstellung) verlaufenden Fahrten. Somit entsprechen nur die Verkehrsbelastungen der Spinnstrecke den tatsächlichen Belastungen der einzelnen Streckenabschnitte.

Die Belastungsspinnen zeigen die starke Trennwirkung der Innenstadt. Verkehre mit Quelle oder Ziel im Westen der Kernstadt fahren überwiegend über die B314 BAB-AS Hilzingen oder über die L191 BAB-AS Singen auf die Autobahn, wohingegen der Verkehr aus bzw. in den Osten der Stadt seine Route vorwiegend über die B33 Konstanz wählt.

Beilage 4.6 zeigt die Verkehrszusammensetzung der Freiheit- und Eckehardstrasse. Die Gesamtbelastung von 15'000 setzt sich zu 12% aus Durchgangsverkehr, zu 61% aus Quell-/Zielverkehr und zu 27% aus innerstädtischem Binnenverkehr zusammen.

3.4.3 Gesamtverkehr Abendspitze 2009

Im Gegensatz zum Analysefall DTV erfolgt in der Modellierung der Abendspitzenbelastungen keine Abminderung auf durchschnittliche Jahresmittelwerte unter Einbeziehung der geringer belasteten Wo-

chenenden. Mithilfe der regional vergleichbaren Dauerzählstellen werden ausschliesslich Faktoren für die Umrechnung von DTV-W Juli auf DTV-W Gesamtjahr ermittelt:

- Kfz/h (Werktag Juli) * 0.89 = Kfz/h (Werktag Gesamtjahr)
- SV/h (Werktag Juli) * 0.96 = SV/h (Werktag Gesamtjahr)

Die im Juli gezählten werktäglichen Abendspitzenbelastungen liegen, unabhängig von Modelleinflüssen, um durchschnittlich 12% (Kfz) und 4% (SV) über den entsprechenden mittleren Belastungen des Analysefalls 2009.

Die Ergebnisse der Umlegungsberechnung für die Abendspitzenbelastung können Beilage 4.7 entnommen werden. In den Belastungsplots für die ASP werden dargestellt:

- Kfz/h: Strecken > 50 Kfz/h, auf 10 Kfz gerundet
- SV/ h: Strecken > 10 SV/h, auf 5 SV gerundet

Es werden auch in angebauten Bereichen vielfach Querschnittbelastungen über 800 – 1'000 Kfz/h ermittelt, bei denen oftmals Nutzungskonflikte zwischen der verkehrlichen Verbindungsfunktion, der Erschliessungs- und der Aufenthaltsfunktion auftreten. Die Trennwirkung dieser Strassen ist erheblich, ein Queren ist im Allgemeinen nur an gesicherten Stellen möglich.

3.5 Zusammenfassende Mängelanalyse MIV

Die Verkehrsbelastungen der Kernstadt sind zu über 90% Eigenverkehre, der Durchgangsverkehrsanteil beträgt unter 10 %. Eine Verlagerung von Verkehrsanteilen auf anbaufreie, bestehende oder zu planende Strassen kann daher nur bedingt die Nutzungskonflikte im Strassenraum vermindern. Neben einer kurzwegigen Zuführung der Quell/Zielverkehre müssen Verkehrsvermeidungsstrategien zur Reduktion des Fahrtenaufkommens bzw. zur modalen Verlagerung von Verkehrsleistungen entwickelt werden.

Die verkehrlichen Analysen und Ortsbegehungen zeigen diverse Überlagerungen von Nutzungsansprüchen aus den stadträumlichen Funktionen für Verbindung, Erschliessung und Aufenthalt.

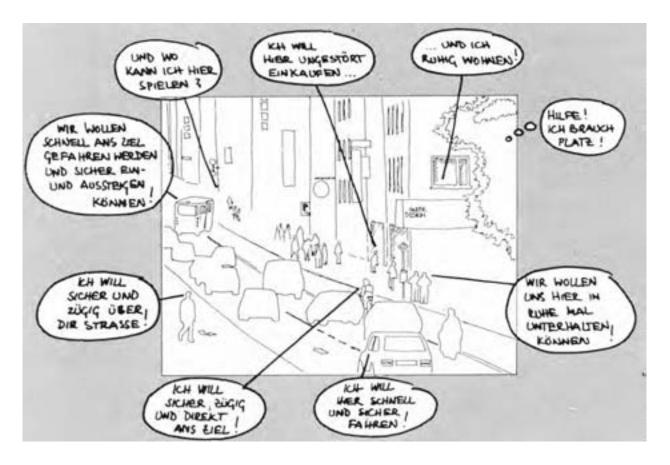


Abbildung 13: Strassenräumliche Nutzungsansprüche

Planungen zur innerstädtischen Strassennetzhierarchie sollen daher nicht nur eine Verlagerung des überörtlichen Durchgangsverkehrs, sondern unter besonderer Berücksichtigung der Städtebaulichen Verträglichkeit eine Lenkung (und Reduzierung) des innerstädtischen Binnen- und Quell-/Zielverkehrs zum Ziel haben. Hierbei wird empfohlen, neben der Verkehrsführung in der Innenstadt insbesondere auch die Südstadt zu betrachten.

4 Prognose der Verkehrsnachfrage 2025

Die Entwicklung der örtlichen Verkehrsnachfrage bis zum Prognosehorizont 2025 unterliegt sowohl überregionalen Einflüssen, wie wirtschaftlichen Entwicklungstendenzen oder generellen Mobilitätsveränderungen als auch regionalen und lokalen Einflüssen, wie Einwohner- und Arbeitsplatzentwicklung.

4.1 Bevölkerungsentwicklung

Das Statistische Landesamt Baden-Württemberg weist für Baden-Württemberg einen Bevölkerungsrückgang zwischen 2010 und 2020 um 1.1~% und bis 2030 um 3.4% aus 13 . Die Anzahl der Erwerbspersonen wird stagnieren.

Das Landesamt prognostiziert die Einwohnerentwicklung des Landkreises Konstanz 14 2009 – 2030 einschließlich Wanderungen auf -1.4 %. Die Vorausrechnungen auf Gemeindeebene 15 im Landkreis variieren zwischen -6.7% für Reichenau und +1.7% für Radolfzell. Für die Stadt Singen wird eine Abnahme um 1.8% vorausgesagt.

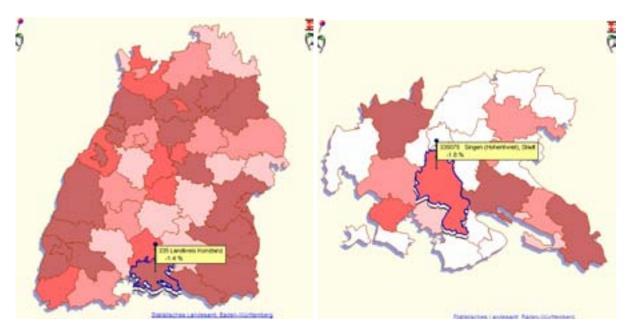


Abbildung 14: Bevölkerungsentwicklung Landkreis Konstanz, Stadt Singen (Quelle: Stat. Landesamt B-W)

Für den gültigen Flächennutzungsplan wurde die Einwohnerentwicklung der Stadt Singen bis 2025 mit + 5% angegeben¹⁶. Aktuellere Voraussagen gehen hingegen eher von einer Stagnation aus¹⁷. Die Bevölkerungsentwicklung variiert hierbei je nach Betrachtungsszenario zwischen + 3.8 und – 3.1%.

¹³ Werner Brachat-Schwarz, Statistischen Landesamt Baden-Württemberg: "Neue Bevölkerungs-vorausrechnung für Baden-Württemberg bis 2060", Statistisches Monatsheft Baden-Württemberg 2/2010

 $[\]frac{14}{http://www.statistik-bw.de/intermaptiv/archiv/home.asp?RS=\&GL=\&TH=\&UT=\&SP=undefined\&ka= (zuletztelingesehen 14.09.2010)$

¹⁵ Vorausrechnungen der Bevölkerungsnetwicklung nur für Gemeinden über 5'000 Einwohner

¹⁶ Stadt Singen, Fachbereich Bauen, Abteilung Stadtplanung: "Flächennutzungsplan der Vereinbarten Verwaltungsgemeinschaft Singen, Rielasingen-Worblingen Steißlingen und Volkertshausen", 09.02.2010

 $^{^{\}rm 17}$ Dipl. Geogr. Tilman Häusser: "Stadt Singen, Bevölkerungsvorausrechnung bis zum Jahr 2025", Tübingen, 05.2008

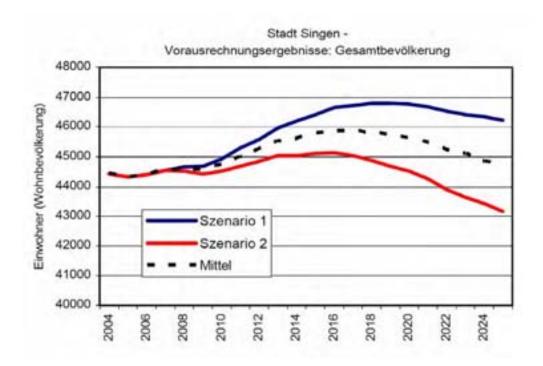


Abbildung 15: Einwohnerentwicklung Singen (Quelle: Häusser 2008)

Im Ergebnis wird für die Verkehrsprognose der Stadt Singen eine Stagnation der Einwohnerentwicklung unterstellt. Innerhalb der Stadtteile und Verkehrsbezirke werden sich aus der Realisierung neuer Wohnbauflächen einerseits und einem weiteren Anstieg des spezifischen Wohnflächenbedarfs andererseits Verlagerungen ergeben. So ist in der Kernstadt tendenziell mit einer rückläufigen Entwicklung zugunsten der Stadtteile zu rechnen.

4.2 Siedlungsstrukturelle Veränderungen Stadt Singen

Folgende Entwicklungsmassnahmen und Bauvorhaben werden in der Verkehrsprognose gesondert ausgewiesen:

- Gewerbe Gaissenrain / Tiefenreute (Bauhaus-Markt)
- Kunsthallenareal (Shopping-Center)
- Bildungsakademie Lange Strasse
- Remishofer Zelgle (Wohnbaufläche)
- Gaissenrain/Tiefenreute (Wohnbaufläche)

Die Verkehrserzeugung dieser Vorhaben wird anhand verfügbarer Untersuchungen und eigener Abschätzungen wie folgt ermittelt:

• Gewerbe Gaissenrain / Tiefenreute:

Fahrten	DTV Total	ASP Total	ASP Quellverkehr	ASP Zielverkehr	
Kfz	15'450	1'700	1'050	650	_
Pkw	92.3%	92.3%	92.3%	92.3%	
Lkw	7.7%	7.7%	7.7%	7.7%	

(Quelle: Karajan Ingenieure: Verkehrsuntersuchung Industriegebiet Gaissenrain / Tiefenreute in Singen, bzw. Aufteilung Pkw/Lkw: eigene Abschätzung)

Kunsthallenareal:

Fahrten	DTV Total	ASP Total	ASP Quellverkehr	ASP Zielverkehr
Kfz	4'794	656	327	329
Pkw	4'724	651	324	327
Lkw	70	5	3	2

(Quelle: Dorsch Consulting: Verkehrstechnische Untersuchung zur Anbindung des geplanten Shoppingcenters an das umgebende Strassennetz im Bereich des Kunsthallenareals, sowie eigene Abschätzung/Hochrechnung der Fahrten für 2025)

• Bildungsakademie Lange Strasse

Fahrten	DTV Total	ASP Total	ASP Quellverkehr	ASP Zielverkehr
Pkw	374	34	13	21

(Quelle: eigene Abschätzung, Angaben Stadtverwaltung 12. 07.2010)

• Remishofer Zelgle:

Fahrten	DTV Total	ASP Total	ASP Quellverkehr	ASP Zielverkehr
Kfz	3'165	283	110	174
Pkw	3'065	276	107	169
Lkw	100	7	3	5

(Quelle: eigene Abschätzung, FNP Verwaltungsgemeinschaft)

• Wohngebiet Gaissenrain/Tiefenreute/Bühl

Fahrten	DTV Total	ASP Total	ASP Quellverkehr	ASP Zielverkehr
Kfz	1'951	174	67	106
Pkw	1'863	168	65	102
Lkw	88	6	2	4

(Quelle: eigene Abschätzung, FNP Verwaltungsgemeinschaft)

4.3 Überregionale Mobilitäts- und Verkehrsentwicklung

Zur Abschätzung der überregionalen Entwicklungstendenzen für Motorisierung, Mobilitätsentwicklung und Gesamtverkehrsentwicklung werden folgende Prognosen und Vorausrechnungen ausgewertet:

- Modus Consult / K+P Transport Consults: "Baden-Württemberg, Strassenverkehrsprognose 2025,
 Analyse/Prognopse Struktur- und Verkehrsdaten", Karlsruhe, 12.2009
- ITP BVU: "Prognose der deutschlandweiten Verkehrsverflechtungen 2025", FE-Nr. 96.0857/2005, Kurzfassung -, München/Freiburg, 14.11.2007
- Shell Deutschland, Progtrans AG: "Shell PKW-Szenarien bis 2030, Fakten, Trends und Handlungsoptionen für nachhaltige Auto-Mobilität", Hamburg, 2009
- BRACHAT-SCHWARZ W., BÜRINGER H., GLASER D.: "Die Entwicklung des Pkw-Bestands bis 2025, Eine Vorausrechnung für die Stadt- und Landkreise Baden-Württembergs", Statistisches Monatsheft Baden-Württemberg 5/2007
- Bundesamt für Raumentwicklung (ARE), Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation (UVEK): "Perspektiven des schweizerischen Personenverkehrs bis 2030", Bern, 2006

Die Prognosen und Szenarien der Pkw-Bestands- und Verkehrsentwicklung zeigen, dass in den kommenden 15 Jahren allenfalls noch ein beschränktes Wachstum von ca. 10% im motorisierten Personenverkehr zu erwarten ist. In einzelnen Untersuchungen wird für die Fahrleistungsentwicklung bis 2030 bereits eine Stagnation prognostiziert. Aufgrund der demographischen Entwicklung wird sich zwischen 2020 und 2025 die Belastungsspitze einstellen. Während die demographischen Veränderungen recht präzise vorausberechnet werden können, werden die wirtschaftlichen, politischen und technologischen Tendenzen auf einen Zeitraum von über 10 Jahren zumeist nur in Form von Szenarien dargestellt.

Für den strassengebundenen Güterverkehr werden im Vergleich mit der Gesamtverkehrsentwicklung überproportionale Verkehrszunahmen vorhergesagt. Vielfach zitierte Steigerungen des Schwerverkehrs von über 50 % sind jedoch meist dem Güterfernverkehr unter Einbeziehung des europäischen Transitverkehrs geschuldet. Der Güternahverkehr wird sich in Abhängigkeit der Wirtschafts- und Bevölkerungsentwicklung in wesentlich geringerem Umfang erhöhen.

Kurzbezeichnung	Verkehrsart	Basis	Horizont		vachs 25 (*)	Quelle	
	Binnen- und Quell- /Zielverkehr Ba-Wü (Kfz)	2005	2025	13%	10%	_	
	Binnen- und Quell- /Zielverkehr Ba-Wü (SV)	2005	2025	20%	16%	-Modus Consult GmbH, Karlsruhe, -12.2009	
Strassenverkehrsprognose Baden-Württemberg 2025 (GVP)	Mittl. Querschnitt-Belastung Autobahn (Kfz)	2005	2025	26%	20%		
(dvi)	Mittl. Querschnitt-Belastung Bundesstrasse (Kfz)	2005	2025	20%	16%		
	Mittl. Querschnitt-Belastung Landesstrasse (Kfz)	2005	2025	12%	9%		
	Motorisierter Personenverkehr Ba-Wü	2004	2025	15%	11%	ITP-BVU, München/Freibur g, 11.2007	
Prognose der deutschlandweiten	Verkehrsleistung Strassengüternahverkehr	2004	2025	11%	8%		
Verkehrsverflechtungen 2025 (BVWP)	Verkehrsleistung Strassengüterfernverkehr	2004	2025	84%	59%		
	Verkehrsleistung Strassengüterverkehr	2004	2025	79%	56%		
Chall Plan Connection his 2000	Jahresgesamtfahrleistung Pkw	2007	2020	1%	1%	Progtrans AG / -Shell, Hamburg, 2009	
Shell Pkw-Szenarien bis 2030	Jahresgesamtfahrleistung Pkw	2007	2030	0%	0%		
Entwicklung des privaten Pkw-Bestandes in den Stadt-	Pkw-Bestand (Verhaltensvariante) Ba-Wü	2006	2025	13%	11%	Statistisches Monatsheft Baden- Württemberg 5/2007, Brachat- Schwar et al.	
und Landkreisen Baden- Württembergs bis 2025	Pkw-Bestand (Verhaltensvariante) Lkr. KN	2006	2025	16%	14%		
Perspektiven des schweizerischen	Jahresgesamtfahrleistung Pkw	2010	2020	6%		infras / -Progtrans AG Basel, 2006	
Personenverkehrs bis 2030 (ARE)	Jahresgesamtfahrleistung Pkw	2010	2030	10%	8%		

^{*)} Annahme lineares Wachstum

Tabelle 5: Auswertung der Prognosen zur überregionalen Mobilitäts- und Verkehrsentwicklung

4.4 Verkehrsnachfrage 2025

Unter Berücksichtigung der lokalen Strukturentwicklungen und überregionalen Mobilitäts- und Verkehrsprognosen wird die Entwicklung der Verkehrsnachfrage im Untersuchungsperimeter geschätzt. Die Verkehrsnachfrage wird unabhängig der unterstellten Angebotsveränderungen (Strassenaus- und Rückbaumassnahmen) für den Planungshorizont 2025 einheitlich erstellt. Die für die einzelnen Planfälle ermittelten Verkehrszu- und -abnahmen im Netz ergeben sich ausschliesslich durch die räumliche Verlagerung der individuellen Fahrtrouten.

In der Verkehrsprognose werden die strukturellen Entwicklungen direkt auf die Verkehrsnachfrage übertragen. Von den Analysematrizen 2009 für Pkw und SV ausgehend werden die Entwicklungen wie folgt abgeschätzt.

Der Personenverkehr MIV wird sich in den nächsten Jahren trotzt der stagnierenden Einwohnerzahlen noch erhöhen. Die Altersstruktur der Bevölkerung führt letztendlich zu einer erhöhten individuellen Mobilität. Gleichfalls wird unterstellt, dass das Angebot des Öffentlichen Verkehrs aufgrund der finanziellen Randbedingungen nicht in relevantem Umfang erhöht werden kann. Der Modal Split wird sich aufgrund der geringeren Schülerzahlen und des zunehmenden Anteils an Freizeitverkehren tendenziell eher reduzieren. Der motorisierte Verkehr wird somit in der Region auch in Zukunft seine massgebli-

che Bedeutung bewahren. Im Ergebnis wird sich daher eine Verkehrsentwicklung im oberen Bereich der oben aufgeführten, zumeist national gemittelten Tendenzen ergeben. Abhängig von den weiteren wirtschaftlichen und politischen Entwicklungen wird die Verkehrsnachfrage für den motorisierten Personenverkehr im Untersuchungsperimeter mit + 12% zwischen 2009 und 2025 abgeschätzt.

Der Lkw- bzw. Schwerverkehr in der Stadt Singen ist durch regionalen Güterverkehr geprägt. Internationaler Durchgangsverkehr mit den prognostizierten hohen Zuwachsraten nutzt das umliegende Autobahnnetz. Im Mittel wird für die regionale Modellierung eine Zunahme der SV-Nachfrage um 22% angenommen. Im Vergleich mit den Entwicklungen des Personenverkehrs ist die Prognose der Schwerverkehrsbelastungen noch stärker von wirtschaftlichen Entwicklungen (BIP) abhängig.

Mit einer mittleren Zunahme der Verkehrsnachfrage von 12.4% für den Gesamtverkehr DTV ¹⁸ werden tendenziell eher optimistische Grundannahmen hinsichtlich der regionalen Entwicklungen für Einwohner und Wirtschaft unterstellt. Mithilfe konzeptioneller Massnahmen zur Förderung des Umweltverbunds sollte zumindest teilweise diese Verkehrsnachfrage auf den öffentlichen und nichtmotorisierten Verkehr verlagert werden.

Für die Modellierung der Spitzenstundenbelastungen wird die Annahme getroffen, dass sich der Anteil der Abendspitzenstunde am Tagesverkehr weiter reduziert. Dies ergibt sich einerseits aus der weiter zunehmenden Flexibilisierung der Arbeitszeiten und andererseits aufgrund von Verdrängungseffekten durch Kapazitätsengpässe in den Spitzenzeiten. Die Prognoseannahmen für den DTV werden um 10% abgemindert: Pkw: Zunahme +10.5%, Lkw: Zunahme +20%.

Wie bei allen Verkehrsprognosen ist die Eintrittswahrscheinlichkeit in Abhängigkeit der zugrunde gelegten wirtschaftlichen und politischen Entwicklung zu betrachten. Sollten in den nächsten Jahren neue Erkenntnisse bezüglich der voraussichtlichen Bevölkerungs-, Motorisierungs- und Mobilitätsentwicklung gewonnen werden oder sollten sich die politischen und gesellschaftlichen Rahmenbedingungen zur Nutzung des motorisierten Individualverkehrs ändern, so wäre ggf. die vorliegende Verkehrsprognose zu aktualisieren.

4.5 Vergleichsfall 2025

Der Vergleichsfall 2025 beinhaltet die auf das zukünftige Verkehrsnetz umgelegte Verkehrsnachfrage des Planungshorizonts (vgl. Kapitel 4.4). Das Wirkungsszenarium entspricht in der modellhaften Simulation einem Unterlassungskonzept, um die Dringlichkeit und Notwendigkeit von Eingriffen bzw. Massnahmen zu verdeutlichen. Gleichzeitig ermöglicht es den qualitativen Vergleich der Massnahmenwirkungen alternativer Netzkonzepte.

4.5.1 Strassennetz Vergleichsfall 2025

Der Vergleichsfall 2025 beinhaltet gegenüber dem heutigen Strassennetz folgende Baumassnahmen:

- Nordstadtanbindung
- Mittelspange Nord

Die Baumassnahme zur Bahnübergangsbeseitigung "Mittelspange Nord" bedingt die Sperrung der Strasse "Zum Umschlagbahnhof". Den Endausbauplanungen entsprechend wird im Verkehrsmodell die Zufahrt der Firma ALCAN auf die Mittelspange nördlich der Bahnüberführung verlegt.

 $^{^{18}}$ Erhöhung der Verkehrsnachfrage Kfz/24h im Untersuchungsperimeter zwischen 2009 und 2025

4.5.2 Verkehrsbelastungen Vergleichsfall 2025

Die Ergebnisse der Modellrechnungen für den Vergleichsfall können Anlage 5 entnommen werden. Neben den Absolutbelastungen für DTV (Anlage 5.1) und Abendspitze (Anlage 5.3) werden in den Anlagen 5.2 und 5.4 die Veränderungen gegenüber dem heutigen Zustand dargestellt.

Gegenüber dem Analysefall 2009 erhöht sich die Gesamtfahrleistung um 13.6%. Die im Vergleich mit der Verkehrsnachfrageerhöhung überproportionale Zunahme der Fahrzeugkilometer ergibt sich aufgrund der Netzauslastung insbesondere in der Kernstadt. Die Verkehrsteilnehmer wählen verstärkt längere und dafür geringer belastete Ausweichrouten. In den Wohn- und Mischbauflächen der Kernstadt erhöht sich die Verkehrsleistung MIV entsprechend unterdurchschnittlich um 10%.

Die Querschnittbelastungen für DTV und Abendspitze sowie die prozentualen Veränderungen gegenüber dem Analysefall 2009 (Modellrechnung) können der folgenden Tabelle entnommen werden. Die Vergleichsquerschnitte entsprechen Abbildung 6.

Quer- schnitt	Strasse	Name	Vergleichs- fall 2025 DTV Kfz	VF25 / AF09	Vergleichs- fall 2025 ASP Kfz	VF25 / AF09
1	B314	Hilzinger Straße	17'374	106%	1'698	102%
2	B34	Schaffhauser Straße	14'723	112%	1'316	109%
3	L191	Singener Straße (R-W)	9'890	111%	902	104%
4		Berliner Straße	13'304	110%	1'265	110%
5	K6157	Überlinger Straße	5'001	130%	475	127%
6		Georg-Fischer-Straße	17'154	115%	1'657	116%
7	B34	Radolfzeller Straße	15'349	126%	1'399	126%
8	K6164	Waldheimsiedlung	4'635	97%	517	98%
9	L189	Friedlinger Straße	4'578	103%	450	111%
10	L191	Hohenkrähenstraße	16'626	93%	1'442	90%
11		Remishofstraße	2'634	104%	281	92%
12	L191	Hohenkrähenstraße	17'353	93%	1'537	90%
13	B34	Schaffhauser Straße	14'006	103%	1'341	102%
14	B34	Freiheitstraße	9'019	109%	814	104%
15	B34	Ekkehardstraße	9'211	118%	812	110%
16	B34	Radolfzeller Straße	15'459	134%	1'382	130%
17		Romeiasstraße	19'667	107%	1'926	113%
18		Bahnhofstraße	11'245	109%	1'129	116%
19		Bahnhofstraße	10'386	102%	1'022	104%
20	L191	Rielasinger Straße	20'244	104%	1'802	106%
21		Güterstraße	9'032	113%	855	110%
22		Münchriedstraße	12'195	105%	1'113	96%
23		Pfaffenhäule	6'391	73%	582	68%

Tabelle 6: Tagesgesamt- und Abendspitzenverkehrsbelastungen Vergleichsfall 2025

Die Belastungsänderungen ergeben sich sowohl durch die Erhöhung der Verkehrsnachfrage zum Planungshorizont 2025 als auch durch Verlagerungen aufgrund der unterstellten Netzausbaumassnahmen.

Die Nordstadtanbindung führt zu einer Reduktion der Verkehrsbelastung auf der L191 Hohenkrähenstrasse von 8% gegenüber dem heutigen Zustand. Die Möglichkeit einer Verlagerung quartiersfremder Verkehre über die Nordstadt (Bruderhofstrasse, Hohenhewenstrasse, Am Posthalterswäldle) kann hierbei jedoch nicht ausgeschlossen werden.

Durch die Mittelspange ergeben sich Verlagerung des Verkehrs zwischen der Innenstadt und dem Industriegebiet von der Güterstrasse/Pfaffenhäule auf die B34 Radolfzeller Strasse.

5 Verkehrliche Wirkungsanalysen

Verkehrliche Wirkungsanalysen werden durchgeführt, um Konzepte, Planungen oder Szenarien hinsichtlich ihrer Wirkungen zu beschreiben. Mit Hilfe des Verkehrsumlegungsmodells können Wirkungsanalysen für die einzelnen Strassennetzkonzepte erstellt werden. Sie ermöglichen die Beurteilung unterschiedlicher Strassennetzvarianten innerhalb des ausgewählten Planungszeitraums und können den verkehrlichen Vergleich der unterschiedlichen Planungsfälle absichern.

Die Gesamtbewertung stützt sich sowohl auf die Simulation des Verkehrsgeschehens als auch auf qualitative Wirkungsvergleiche, worin verkehrliche, städtebauliche und umweltbezogene Kriterien berücksichtigt werden können¹⁹.

Im Rahmen der Verkehrskonzeption für die Stadt Singen ist vor allem zu überprüfen, ob die abgeschätzten Wirkungen der vorgesehenen Massnahmen mit den angestrebten (städtebaulichen und verkehrlichen) Planungszielen übereinstimmen.

Daraus ergibt sich für die Verwaltung und alle politisch bzw. planerisch Handelnden frühzeitig die Chance zu überprüfen, ob mit dem bevorzugten Konzept auch die gewünschten Wirkungen erreicht werden.

5.1 Planfall 1 - Verkehrsberuhigter Geschäftsbereich

Das Innenstadtentwicklungskonzept Singen 2020²⁰ empfahl eine Änderung der Verkehrssituation im Norden der Innenstadt mit einer Bündelung des Durchgangsverkehrs im Zwei-Richtungs-Verkehr auf der Freiheitstrasse sowie einer Verlagerung des innerstädtischen Ziel- und Quellverkehrs in beiden Richtungen auf die Ekkehardstrasse. Mit der Freiheitstrasse, Alpenstrasse, Bahnhofstrasse und Hauptstrasse sollte ein (Vorbehaltsstrassen-) Innenring geschaffen werden. Dieses Konzept ist jedoch umstritten.

Der Anteil des Durchgangsverkehrs in der Innenstadt ist bereits heute mit 12% gering, sodass eine Verkehrsaufteilung von Durchgangsverkehr auf die Freiheitstrasse und Quell-/Zielverkehr auf die Ekkehardstrasse nicht zwingend erforderlich erscheint. Unter Berücksichtigung der (zum Zeitpunkt der Innenstadtkonzeption noch nicht verfügbaren) aktuellen Verkehrsanalysen wird daher nun ein modifiziertes Innenstadtkonzept untersucht.

¹⁹ Die vorliegenden Untersuchungen zur Fortschreibung des GVP beinhalten ausschliesslich quantitativ-verkehrliche Wirkungsanalysen.

²⁰ Fahle Stadtplaner; Stand 2008

Einem Verkehrskonzept für die Freiheit- und Ekkehardstrasse werden folgende Planungsziele zugrunde gelegt:

- Erhöhung des Verkehrswiderstands zur Verlagerung des kleinräumigen Durchgangsverkehrs (Städtischer Verkehr mit Quelle und Ziel ausserhalb der nördlichen Innenstadt)
- Umverteilung des Strassenraums zugunsten des nichtmotorisierten Verkehrs
- Stärkung der Aufenthaltsfunktion
- Bewahrung der Erreichbarkeit im MIV (insbesondere Liefer- und Anliegerverkehr)
- Verbesserung der ungesicherten freien Querungsmöglichkeiten im Fussgängerverkehr
- "Gleichbehandlung" von Freiheitstrasse und Ekkehardstrasse
- Reduzierung der Lärm- und Luftschadstoffbelastungen

Zur Umsetzung dieser Zielvorgaben wird ein Szenario (Planfall 1) entwickelt, bei dem Freiheitstrasse und Ekkehardstrasse als verkehrsberuhigte Geschäftbereiche mit Einrichtungsverkehr konzipiert werden:

- Verkehrsberuhigter Geschäftsbereich 20 km/h
- Bewahrung der bestehenden Einbahnstrassenregelung
- Reduzierung der Fahrbahn auf einen Fahrstreifen
- Hierdurch Vergrösserung der Aufenthaltsflächen

Durch die Massnahmen erhöht sich die Attraktivität der innerstädtischen Geschäftsstrassen massgeblich. Die erwartete Reduzierung der Verkehrsmengen in Verbindung mit der Geschwindigkeitsbeschränkung führt zu einer erheblichen Reduzierung der Umweltbelastungen. Durch die Beschränkung auf eine Fahrspur und die Geschwindigkeit 20 km/h wird das ungebundene Queren ermöglicht.

5.1.1 Strassennetz Planfall 1 - Verkehrsberuhigter Geschäftsbereich

Das Netzmodell Planfall 1 basiert auf dem Vergleichfall 2025, d.h. Nordanbindung und Mittelspange werden als realisiert unterstellt.

In der Freiheitstrasse und Ekkehardstrasse wird die Geschwindigkeit auf 20 km/h reduziert und die Kapazität halbiert. Diese Massnahmen werden für den jeweiligen Abschnitt zwischen Hauptstrasse und Alpenstrasse angenommen.

Weitere, möglicherweise sinnvolle flankierende Massnahmen zur Vermeidung unerwünschter Verlagerungseffekte werden (vorläufig) nicht unterstellt. Es ist Ziel der Modelluntersuchung, die positiven und negativen Wirkungen des Grobkonzepts zu ermitteln und hieraus bei Bedarf ergänzende Verkehrsberuhigungs- und Lenkungsmassnahmen abzuleiten.

5.1.2 Verkehrsbelastungen Planfall 1 - Verkehrsberuhigter Geschäftsbereich

Die Ergebnisse der Modellrechnungen, Absolutbelastungen und Belastungsdifferenzen gegenüber dem Vergleichsfall 2025, können im Detail den Belastungsplots in den Anlagen 6 entnommen werden.

Die Belastung der Freiheitstrasse und Ekkehardstrasse reduziert sich von jeweils ca. 9'000 Kfz/24h um ca. 40% auf 5'200 bzw. 5'600 Kfz/24h. In der Abendspitzenstunde ergeben sich Belastungen von maximal 650 Kfz/h, sodass keine streckenbezogenen Kapazitätsengpässe zu erwarten \sin^{21} .

Somit wird der Nachweis erbracht, dass vor allem durch die Geschwindigkeitsbeschränkung 20 km/h hinreichend Verkehr verlagert werden kann, um einen Rückbau auf eine Fahrspur (zumindest ausserhalb der Knotenpunktbereiche) zu ermöglichen.

Quer- schnitt	Strasse	Name	Planfall 1 2025 DTV Kfz	PF1 / VF25	Planfall 1 2025 ASP Kfz	PF1 / VF25
1	B314	Hilzinger Straße	17'070	98%	1'661	98%
2	B34	Schaffhauser Straße	15'084	102%	1'328	101%
3	L191	Singener Straße (R-W)	9'943	101%	906	100%
4		Berliner Straße	13'359	100%	1'292	102%
5	K6157	Überlinger Straße	5'047	101%	475	100%
6		Georg-Fischer-Straße	17'331	101%	1'668	101%
7	B34	Radolfzeller Straße	14'991	98%	1'370	98%
8	K6164	Waldheimsiedlung	4'609	99%	517	100%
9	L189	Friedlinger Straße	4'461	97%	415	92%
10	L191	Hohenkrähenstraße	15'323	92%	1'357	94%
11		Remishofstraße	2'840	108%	277	99%
12	L191	Hohenkrähenstraße	16'039	92%	1'449	94%
13	B34	Schaffhauser Straße	13'872	99%	1'299	97%
14	B34	Freiheitstraße	5'218	58%	500	61%
15	B34	Ekkehardstraße	5'611	61%	489	60%
16	B34	Radolfzeller Straße	14'827	96%	1'335	97%
17		Romeiasstraße	19'840	101%	1'947	101%
18		Bahnhofstraße	11'564	103%	1'138	101%
19		Bahnhofstraße	13'538	130%	1'286	126%
20	L191	Rielasinger Straße	20'369	101%	1'824	101%
21		Güterstraße	9'099	101%	890	104%
22		Münchriedstraße	12'287	101%	1'128	101%
23		Pfaffenhäule	6'462	101%	579	99%

Tabelle 7: Tagesgesamt- und Abendspitzenverkehrsbelastungen Planfall 1

Wie erwartet bewirkt die Reduktion der Verkehrsmengen in Freiheit- und Ekkehardstrasse Zusatzbelastungen auf den Alternativrouten. Die Georg-Fischer-Strasse wird jedoch nur geringfügig (max. $+750~\mathrm{Kfz/24h}$) stärker belastet.

Der überwiegende Verkehr mit Quelle und/oder Ziel im nahen Umkreis der beiden Strassenzüge weicht nur sehr kleinräumig aus, woraus sich insbesondere Mehrbelastungen von bis zu 3'000 Kfz/24h in der westlichen Bahnhofstrasse ergeben. Auch die Alemannenstrasse und Ringstrasse (i.M. +1'000 Kfz/24h) werden zusätzlich belastet.

²¹ Der Nachweis der Knotenpunktleistungsfähigkeiten erfolgt auf der Grundlage einer konkretisierten Konzeptplanung in einer zweiten Bearbeitungsstufe

Die Analyse der Fahrleistungsbilanz ergibt eine Reduktion der Fahrzeugkilometer innerhalb des Kernstadtkordons um über 6%. Die Verkehrsleistung des (absolut geringen) Durchgangsverkehrs reduziert sich in diesem Szenario nochmals um 8%.

Die Auswertung der Streckenbelastungen und der Fahrleistungen zeigt, dass die Konzeption "Verkehrsberuhigter Geschäftsbereich" anteilig sowohl zu einer Verlagerung auf die benachbarten Strassen als auch zu einer Reduzierung der innerstädtischen Verkehrsleistungen führt.

In der weiteren Konkretisierung der Konzeption muss untersucht werden, ob die lokalen Zusatzbelastungen städtebaulich und verkehrstechnisch verträglich sind und ob ggf. mit flankierenden Massnahmen unverträgliche Verlagerungen kompensiert werden können.

5.2 Planfall 2 – Erweitertes Konzept verkehrsberuhigter Geschäftsbereich

Der vorhergehend beschriebene Planfall 1 – Verkehrsberuhigter Geschäftsbereich bewirkt erwartungsgemäss Verkehrsverlagerungen. Während Verlagerungen auf die Westtangente – Georg-Fischer-Strasse grundsätzlich als unproblematisch bzw. als erwünscht bewertet werden, sind Zusatzbelastungen in der Nordstadt oder am Bahnhof tendenziell kritisch. Diese Mehrbelastungen widersprechen den jeweiligen, lokalen städtebaulichen Zielsetzungen und müssen somit im Detail gegenüber den erzielten Nutzen (Entlastung der Freiheit- und Ekkehardstrasse) abgewogen werden.

Mit Hilfe des Planfalls 2 wird daher untersucht, ob durch geeignete flankierende Massnahmen die kritischen Mehrbelastungen eliminiert oder zumindest reduziert werden können. Hierbei ist auch zu prüfen, ob bzw. in welchem Umfang die flankierenden Massnahmen auf den Ausweichstrecken zu Rückverlagerungen in die Freiheit- und Ekkehardstrasse führen, und ob damit ggf. die originären Planungsziele gefährdet werden.

Bahnhofstrasse

Bereits das Innenstadtentwicklungskonzept 2020²² empfahl eine Aufwertung und Neugestaltung des Bahnhofsbereichs. Wesentliche Planungsziele sind die städtebaulich attraktive Neuordnung der Verkehrsflächen (ZOB, Parkierung, Fussgänger) mit einer optimierten fussläufigen Verbindung in die Innenstadt. Gleichzeitig soll die Leistungsfähigkeit der Bahnhofstrasse als südlicher innerer Ring bewahrt bzw. sogar verbessert werden.

Wird unterstellt, dass eine Absenkung des MIV-Verkehrs und grossflächige Überdeckung der Strasse aus wirtschaftlichen Gründen nicht machbar ist, müssen die divergierenden Nutzungsansprüche der einzelnen Verkehrsarten adäquat auf gleicher Ebene gelöst werden. Vergleichbare Problemstellungen zur Neugestaltung und Aufwertung des Bahnhofsvorplatzes sind auch in anderen Städten der Region (z.B. Konstanz) anzutreffen.

Unter Berücksichtigung der heute verfügbaren und eingeführten verkehrsrechtlichen Regelungen wird eine Neugestaltung mit Ausweisung eines Verkehrsberuhigten Geschäftsbereichs vorgeschlagen. Die Geschwindigkeit wird auf 20 km/h beschränkt, Fussgänger haben jedoch keinen Vortritt.

Eine Bevorrechtigung der Fussgänger, wie sie z.B. in einer Begegnungszone, einem "Shared Space" oder einem Verkehrsberuhigten Bereich (Spielstrasse) vorgesehen ist, würde aufgrund der starken Querungsströme zwischen Innenstadt und Bahnhof zu einer unverträglichen Beschränkung der Leistungsfähigkeit führen.

 $^{^{\}rm 22}$ Innenstadtentwicklungskonzept 2020: Projekt 22, Priorität 1A

Nordstadt

In der Nordstadt haben sich die Verkehrsbelastungen durch die Realisierung der Nordstadtanbindung verschoben. Während bisher der Quell-/Zielverkehr der Nordstadt fast vollständig von Süden über die Alemannenstrasse bzw. Freiheit-/Ekkehardstrasse zufuhr, ergibt sich nun eine gleichmässigere Verteilung der Verkehrsbelastungen mit einer Entlastung der südlichen Bereiche und Belastungszunahmen in Richtung der Nordstadtanbindung. Die Verkehrsmodellrechnungen zeigen auch, dass quartiersfremde Durchgangsverkehre in geringem Umfang nicht ausgeschlossen werden können.

Abbildung 16: Vergleichsfall 2025 DTV: Belastungsspinne Nordstadtanbindung

Im Zusammenhang mit der in den Planfällen 1 und 2 untersuchten Verkehrsberuhigung 20 km/h für Freiheit- und Ekkehardstrasse werden diese Verlagerungseffekte verstärkt. Daher werden in Planfall 2 zusätzliche Verkehrsberuhigungsmasssnahmen in der Nordstadt unterstellt.

Im Bestand ist von den bestehenden Nord-Süd-Verbindungen nur die westliche Achse Remishofstrasse – Anton-Bruckner-Strasse – Erzbergerstrasse durchgängig 50 km/h ausgewiesen. In der mittleren Achse, Hohenhewenstrasse – Ringstrasse, und der östlichen Verbindung Am Posthalterswäldle sind einzelne Abschnitte auf 30 km/h begrenzt. Die Buslinien verlaufen überwiegend über das Vorbehaltsnetz, in Teilabschnitten werden aber auch Strassen in Tempo 30-Zonen befahren (Posthalterswäldle, Uhlandstrasse). Als Vorfahrtstrassen sind die drei Nord-Süd-Verbindungen, die westliche Uhlandstrasse und die Bruderhofstrasse mit Unterbrechungen durch die Kreisverkehre ausgewiesen.

In der vorliegenden Aufgabenstellung steht nicht die Neuerstellung oder Überarbeitung eines Verkehrskonzepts Nordstadt im Vordergrund, sondern es soll der Nachweis geführt werden, dass mit geeigneten Massnahmen die in Planfall 1 ermittelten Verkehrsverlagerungen kompensiert werden können.

Hierzu werden folgende Massnahmen modelltechnisch abgebildet:

- Am Posthalterswäldle nördlich Beethovenstrasse: 30 km/h
- Ringstrasse südlich Widerholdstrasse: 30 km/h

Eine weitergehende Verkehrsberuhigung der Alemannenstrasse wird aus modelltechnischen Gründen nicht unterstellt, auch wenn die Umlegungsergebnisse eine Belastungszunahme ausweisen. Östlich der Erzbergerstrasse können durch punktuelle Verengungen oder (als Maximalvariante) einer Ausweisung eines Verkehrsberuhigten Bereichs in einem kurzen Abschnitt der Alemannenstrasse mögliche "Schleichverkehre" unterbunden werden.

5.2.1 Strassennetz Planfall 2 - Erweitertes Konzept verkehrsberuhigter Geschäftsbereich

Das Netzmodell dieses Szenariums baut auf Planfall 1 auf. Dementsprechend enthält es die einspurigen Verkehrsbereiche Freiheit- und Ekkehardstrasse 20 km/h (vgl. Kapitel 5.1.1).

Zusätzlich wird ein Verkehrsberuhigter Geschäftsbereich Bahnhofstrasse zwischen der Einmündung Thurgauer Strasse im Osten und Erzbergerstrasse im Westen unterstellt. Im Verkehrsmodell wird die Geschwindigkeit auf 20 km/h reduziert, die Kapazität der Strasse wird nicht verändert.

In der Nordstadt werden die vorgenannten Geschwindigkeitsbeschränkungen in der Ringstrasse und Am Posthalterswäldle auf 30 km/h in das Netzmodell eingefügt.

5.2.2 Verkehrsbelastungen Planfall 2 - Erweitertes Konzept verkehrsberuhigter Geschäftsbereich

Die Umlegungsergebnisse des Planfalls, Absolutbelastungen und Belastungsdifferenzen gegenüber dem Vergleichsfall sind in Anlage 7 zusammengefasst.

Durch die Verkehrsberuhigung auf den Alternativrouten erhöhen sich die Belastungen in der Freiheitstrasse und Ekkehardstrasse gegenüber dem Planfall 1 um durchschnittlich 15% auf 6'000 bzw. 6'600 Kfz/24h. Gegenüber dem Vergleichsfall ergibt sich noch immer eine Entlastung um ca. 30%. In der Abendspitze ergeben sich Belastungen von maximal 700 Kfz/h. Auch mit dieser Belastung ist ein Rückbau auf eine Spur zumindest ausserhalb der Knotenpunkte machbar.

In der Bahnhofstrasse verbleiben Belastungen von ca. 11'500 Kfz/24h. Gegenüber dem Vergleichsfall entspricht dies noch immer einer Zunahme um 13%, gegenüber Planfall 1 ergibt sich eine Entlastung um 14%. Der Umbau des Bahnhofsvorplatzes soll eine Harmonisierung der unterschiedlichen Nutzungsansprüche durch eine Reduzierung der Geschwindigkeiten im MIV wie auch eine städtebauliche Aufwertung erzielen; eine Verminderung der Verkehrsbelastungen ist jedoch nicht machbar, wenn parallel eine Entlastung in Freiheit- und Ekkehardstrasse angestrebt wird.

In der Nordstadt bewirken die Verkehrsberuhigungsmassnahmen als solche eine Verlagerung des quartierbezogenen Verkehrs. Durchgangsverkehr ist jedoch ähnlich dem Vergleichsfall nur in geringem Umfang zu erwarten.

Die zusätzlichen innerstädtischen Beruhigungsmassnahmen bewirken eine zumindest geringfügige zusätzliche Verlagerung von Verkehren auf die Georg-Fischer-Strasse (+ 1'000 Kfz/24h gegenüber Vergleichsfall).

Im Ergebnis zeigt dieser Planfall, dass die Massnahme "Verkehrsberuhigter Geschäftsbereich in Freiheit- und Ekkehardstrasse" durch flankierende Massnahmen ergänzt werden kann, sodass unerwünschte Mehrbelastungen auf städtebaulich sensiblen Alternativrouten vermieden werden können. Allerdings ergibt sich damit eine reduzierte Entlastung in Freiheit- und Ekkehardstrasse, wobei das Grundkonzept mit einspuriger Verkehrsführung jedoch nicht in Frage gestellt wird. Im Einzelnen wird

mithilfe detaillierter Leistungsfähigkeitsnachweise der Knotenpunkte die verkehrstechnische Machbarkeit nachzuweisen sein.

Für den Bahnhofbereich ist eine Aufwertung entsprechend den Vorschlägen des Innenstadtkonzepts möglich. Die Bewahrung der verkehrstechnischen Leistungsfähigkeit einerseits und die Verbesserung der Querbarkeit im Fussgängerverkehr und Aufenthaltsfunktion andererseits erfordern jedoch eine qualitativ hochwertige Planung.

Quer- schnitt	Strasse	Name	Planfall 2 2025 DTV Kfz	PF2 / VF25	PF2 / PF1	Planfall 2 2025 ASP Kfz	PF2 / VF25	PF2 / PF1
1	B314	Hilzinger Straße	17'197	99%	101%	1'670	98%	101%
2	B34	Schaffhauser Straße	15'056	102%	100%	1'327	101%	100%
3	L191	Singener Straße (R-W)	9'716	98%	98%	899	100%	99%
4		Berliner Straße	13'438	101%	101%	1'279	101%	99%
5	K6157	Überlinger Straße	5'092	102%	101%	482	101%	101%
6		Georg-Fischer-Straße	17'363	101%	100%	1'684	102%	101%
7	B34	Radolfzeller Straße	14'803	96%	99%	1'339	96%	98%
8	K6164	Waldheimsiedlung	4'562	98%	99%	528	102%	102%
9	L189	Friedlinger Straße	4'498	98%	101%	429	95%	103%
10	L191	Hohenkrähenstraße	15'903	96%	104%	1'373	95%	101%
11		Remishofstraße	2'768	105%	97%	275	98%	99%
12	L191	Hohenkrähenstraße	16'622	96%	104%	1'465	95%	101%
13	B34	Schaffhauser Straße	13'749	98%	99%	1'302	97%	100%
14	B34	Freiheitstraße	5'983	66%	115%	579	71%	116%
15	B34	Ekkehardstraße	6'570	71%	117%	540	67%	110%
16	B34	Radolfzeller Straße	14'709	95%	99%	1'328	96%	99%
17		Romeiasstraße	19'947	101%	101%	1'939	101%	100%
18		Bahnhofstraße	11'058	98%	96%	1'075	95%	94%
19		Bahnhofstraße	11'699	113%	86%	1'160	114%	90%
20	L191	Rielasinger Straße	19'932	98%	98%	1'813	101%	99%
21		Güterstraße	9'333	103%	103%	885	104%	99%
22		Münchriedstraße	12'488	102%	102%	1'134	102%	101%
23		Pfaffenhäule	6'380	100%	99%	574	99%	99%

Tabelle 8: Tagesgesamt- und Abendspitzenverkehrsbelastungen Planfall 2

6 Zusammenfassung und weiterer Ausblick

6.1 Vorliegende Untersuchungsergebnisse

Der bisherigen Untersuchung liegt eine thematische Konzentration auf die Bestandsanalyse und modelltechnische Wirkungsprognose verkehrsbeeinflussender Massnahmen zugrunde. Eine wesentliche Grundlage der Studie ist die Erstellung eines Verkehrsmodells für den motorisierten Individualverkehr und Schwerverkehr der Gesamtstadt mit einer maximalen Abbildungsgenauigkeit der Innenstadt. Das Prognosemodell soll sowohl der Untersuchung von Fragen der gesamtstädtischen Verkehrslenkung als auch der innerstädtischen Verkehrskonzeption dienen.

Verkehrsanalyse

Die im Juli 2009 durchgeführten, umfassenden Verkehrszählungen und Befragungen zeigen im Mittel eine eher geringe Verkehrszunahme MIV um 3% innerhalb der letzten 10 Jahre, wobei die örtlichen Veränderungen erheblich streuen.

Täglich werden ca. 480'000 Fahrzeugkilometer in der Kernstadt gefahren. Diese werden nur zu 7% von Durchgangsverkehr mit Quelle und Ziel ausserhalb der Kernstadt Singen verursacht. 93% der städtischen Verkehrsbelastung ist somit als Eigenverkehr zu bezeichnen. Innerhalb der Kernstadt betragen die Durchgangsverkehrsbelastungen in der Georg-Fischer-Strasse ca. 700 Kfz/24h sowie in der Freiheit- und Ekkehardstrasse 1'800 Kfz/24h.

Eine Verlagerung von Verkehrsanteilen auf anbaufreie, bestehende oder zu planende Strassen kann daher nur bedingt die Nutzungskonflikte im Strassenraum vermindern. Neben einer kurzwegigen Zuführung der Quell/Zielverkehre müssen Verkehrsvermeidungsstrategien zur Reduktion des Fahrtenaufkommens bzw. zur modalen Verlagerung von Verkehrsleistungen entwickelt werden. Planungen zur innerstädtischen Strassennetzhierarchie sollen daher nicht nur eine Verlagerung des überörtlichen Durchgangsverkehrs, sondern unter besonderer Berücksichtigung der Städtebaulichen Verträglichkeit eine Lenkung (und Reduzierung) des innerstädtischen Binnen- und Quell-/Zielverkehrs zum Ziel haben.

Verkehrsprognose 2025

Unter Berücksichtigung der lokalen Strukturentwicklungen und überregionalen Mobilitäts- und Verkehrsprognosen wird die Entwicklung der Verkehrsnachfrage für den Planungshorizont 2025 im Untersuchungsperimeter geschätzt. Der Personenverkehr MIV wird sich in den nächsten Jahren trotzt der stagnierenden Einwohnerzahlen noch erhöhen. Die Altersstruktur der Bevölkerung führt letztendlich zu einer erhöhten individuellen Mobilität. Gleichfalls wird unterstellt, dass das Angebot des Öffentlichen Verkehrs aufgrund der finanziellen Randbedingungen nicht in relevantem Umfang erhöht werden kann. Der motorisierte Verkehr wird in der Region auch in Zukunft seine massgebliche Bedeutung bewahren. Im Ergebnis wird die Verkehrsnachfrage für den motorisierten Personenverkehr im Untersuchungsperimeter mit + 12% zwischen 2009 und 2025 abgeschätzt.

Der Lkw- bzw. Schwerverkehr in der Stadt Singen ist durch regionalen Güterverkehr geprägt. Internationaler Durchgangsverkehr mit den prognostizierten hohen Zuwachsraten nutzt das umliegende Autobahnnetz. Im Mittel wird für die regionale Modellierung eine Zunahme der SV-Nachfrage um 22% angenommen. Im Vergleich mit den Entwicklungen des Personenverkehrs ist die Prognose der Schwerverkehrsbelastungen noch stärker von wirtschaftlichen Entwicklungen (BIP) abhängig.

Planfall 1 - Verkehrsberuhigter Geschäftsbereich

Die verkehrlichen Wirkungsanalysen für den Planungshorizont 2025 beinhalten ein Szenarium (Planfall 1) zur Anpassung des innerstädtischen Strassennetzes. Für die Freiheit- und Ekkehardstrasse werden folgende Planungsziele definiert:

- Erhöhung des Verkehrswiderstands zur Verlagerung des kleinräumigen Durchgangsverkehrs (Städtischer Verkehr mit Quelle und Ziel ausserhalb der nördlichen Innenstadt)
- Umverteilung des Strassenraums zugunsten des nichtmotorisierten Verkehrs
- Stärkung der Aufenthaltsfunktion
- Bewahrung der Erreichbarkeit im MIV (insbesondere Liefer- und Anliegerverkehr)
- Verbesserung der ungesicherten freien Querungsmöglichkeiten im Fussgängerverkehr
- "Gleichbehandlung" von Freiheitstrasse und Ekkehardstrasse
- Reduzierung der Lärm- und Luftschadstoffbelastungen

Zur Umsetzung dieser Zielvorgaben wird ein Planfall entwickelt und mit Hilfe des Verkehrsmodells untersucht, bei dem Freiheitstrasse und Ekkehardstrasse als verkehrsberuhigte Geschäftbereiche mit Einrichtungsverkehr konzipiert werden:

- Verkehrsberuhigter Geschäftsbereich 20 km/h
- Bewahrung der bestehenden Einbahnstrassenregelung
- Reduzierung der Fahrbahn auf einen Fahrstreifen
- Hierdurch Vergrösserung der Aufenthaltsflächen

Durch die Massnahmen erhöht sich die Attraktivität der innerstädtischen Geschäftsstrassen massgeblich. Die erwartete Reduzierung der Verkehrsmengen in Verbindung mit der Geschwindigkeitsbeschränkung führt zu einer erheblichen Reduzierung der Umweltbelastungen. Durch die Beschränkung auf eine Fahrspur und die Geschwindigkeit 20 km/h wird das ungebundene Queren ermöglicht.

Die Modellrechnungen ergeben eine Reduktion der Belastung in der Freiheitstrasse und Ekkehardstrasse um 40% auf jeweils ca. 5'500 Kfz/24h. In der Abendspitzenstunde ergeben sich Belastungen von maximal 650 Kfz/h, sodass keine streckenbezogenen Kapazitätsengpässe zu erwarten sind.

Der überwiegende Verkehr mit Quelle und/oder Ziel im nahen Umkreis der beiden Strassenzüge, weicht nur sehr kleinräumig aus, woraus sich insbesondere Mehrbelastungen in der westlichen Bahnhofstrasse ergeben. Auch die Alemannenstrasse und Ringstrasse werden zusätzlich belastet. Die Analyse der Fahrleistungsbilanz ergibt eine erwünschte Reduktion der Fahrleistungen innerhalb des Kernstadtkordons um über 6%.

Planfall 2 - Erweitertes Konzept verkehrsberuhigter Geschäftsbereich

Die Mehrbelastungen in der Bahnhofstrasse und insbesondere in der Nordstadt widersprechen den jeweiligen, lokalen städtebaulichen Zielsetzungen und müssen im Detail gegenüber den erzielten Nutzen (Entlastung der Freiheit- und Ekkehardstrasse) abgewogen werden. Mit Hilfe einer zusätzlichen Modellrechnung wird daher untersucht, ob durch geeignete flankierende Massnahmen die kritischen Mehrbelastungen kompensiert werden können.

Wesentliche Planungsziele für den Bahnhofsbereich sind die städtebaulich attraktive Neuordnung der Verkehrsflächen mit einer optimierten fussläufigen Verbindung in die Innenstadt. Gleichzeitig soll die Leistungsfähigkeit der Bahnhofstrasse als südlicher innerer Ring bewahrt bzw. sogar verbessert werden. Hierzu wird eine Neugestaltung mit Ausweisung eines Verkehrsberuhigten Geschäftsbereichs

vorgeschlagen. Die Geschwindigkeit wird auf 20 km/h beschränkt, Fussgänger haben jedoch keinen Vortritt.

In der Nordstadt haben sich die Verkehrsbelastungen durch die Realisierung der Nordstadtanbindung verschoben. Es ergibt sich nun eine gleichmässigere Verteilung der Verkehrsbelastungen mit einer Entlastung der südlichen Bereiche und Belastungszunahmen in Richtung der Nordstadtanbindung. Die Verkehrsmodellrechnungen zeigen, dass quartiersfremde Durchgangsverkehre in geringem Umfang nicht ausgeschlossen werden können. Durch die Verkehrsberuhigung 20 km/h für Freiheit- und Ekkehardstrasse werden diese Verlagerungseffekte verstärkt. Daher werden in Planfall 2 zusätzliche Verkehrsberuhigungsmasssnahmen in der Nordstadt unterstellt.

Mit der Verkehrsberuhigung auf den Alternativrouten werden Belastungen in der Freiheitstrasse und Ekkehardstrasse von 6'000 bzw. 6'600 Kfz/24h prognostiziert. Gegenüber dem Vergleichsfall ergibt sich noch immer eine Entlastung um ca. 30%. Auch mit dieser Belastung ist ein Rückbau auf eine Spur zumindest ausserhalb der Knotenpunkte machbar.

In der Bahnhofstrasse verbleiben Belastungen von ca. 11'500 Kfz/24h. Eine Verminderung der Verkehrsbelastungen gegenüber dem Bestand nicht machbar, wenn parallel eine Entlastung in Freiheitund Ekkehardstrasse angestrebt wird.

In der Nordstadt können die Zusatzverkehre aus Planfall 1 im Wesentlichen eliminiert werden. Die Verkehrsberuhigungsmassnahmen bewirken als solche eine Verlagerung des quartierbezogenen Verkehrs. Durchgangsverkehr ist ähnlich dem Vergleichsfall nur in geringem Umfang zu erwarten.

Mit der Modellberechnung Planfall 2 kann nachgewiesen werden, dass der Verkehrsberuhigte Geschäftsbereich in Freiheit- und Ekkehardstrasse mit flankierenden Massnahmen zu keinen unerwünschten Mehrbelastungen auf städtebaulich sensiblen Alternativrouten führt. Allerdings ergibt sich damit eine reduzierte Entlastung in Freiheit- und Ekkehardstrasse, wobei das Grundkonzept mit einspuriger Verkehrsführung jedoch nicht in Frage gestellt wird.

6.2 Weitere Bearbeitungsschritte

Die vorliegenden Untersuchungen zur Fortschreibung des Generalverkehrsplans beinhalten eine Modellierung von MIV-Verkehrsangebot und -nachfrage für Analyse- und Prognosezustand. Konzeptionelle Aufgabenstellungen zur Anpassung der Verkehrsnachfrage im Sinne einer integrierten Verkehrsentwicklungsplanung sind bisher nicht vorgesehen.

Eine Reduktion des innerstädtischen MIV wird durch "push"- und "pull"-Massnahmen erzielt:

- <u>Push-Massnahmen</u>: Reduzierung der Attraktivität des MIV, z.B. durch Verkehrsberuhigung, Verkehrslenkung und Parkraumbewirtschaftung
- <u>Pull-Massnahmen</u>: Förderung des ÖPNV und des nichtmotorisierten Verkehrs zur modalen Verlagerung. Verbesserung des ausserörtlichen Strassennetzes zur räumlichen Verlagerung des innerstädtischen MIV.

Vor einer Realisierung von lokalen Einzelmassnahmen zur Reduzierung des innerstädtischen MIV wird daher die Erstellung einer Verkehrskonzeption vorgeschlagen. Diese Konzeptplanung ist (kreativer) Bestandteil des "Generalverkehrsplans" bzw. der Verkehrsentwicklungsplanung VEP. Die VEP-Erstellung sollte ggf. auch in das lokale eea-Programm der Stadt Singen aufgenommen werden.

Mögliche Arbeitsschritte des Teilkonzepts MIV-Massnahmen:

- Zustands- und M\u00e4ngelanalyse von st\u00e4dtebaulichen und verkehrlichen Nutzungskonflikten²³ im Strassennetz der Stadt Singen
- Erarbeitung von verkehrlichen Leitlinien und Zielvorstellungen
- Überprüfung / Validierung der kommunalen Strassennetzhierarchie
- Entwicklung von alternativen Handlungskonzepten für Strassennetz und Verkehrslenkung
- Entwicklung von alternativen Parkraum- und Bewirtschaftungskonzepten
- Wirkungsanalysen²⁴ und multikriterielle Bewertung
- Abwägung und Entscheidungen (Verwaltung, Gremien, Verbände)
- Umsetzung und Wirkungskontrolle

Projektergebnisse:

- Fachlich und politisch abgestimmter Handlungsleitfaden für Strassennetz/Verkehrslenkung und Ruhender Verkehr (Rahmenpläne)
- Realisierungskonzept zur Planung/Umsetzung der Einzelmassnahmen

Teilkonzeption Rad-und Fussgängerverkehr

Im Sinne einer integrierten Verkehrsentwicklungsplanung müssen die sektoralen (verkehrsträgerspezifischen) Konzeptionen und Planungen aufeinander abgestimmt werden. Der Abstimmung bedürfen sowohl die sektoralen Zielsetzungen und Strategien als auch die konkreteren Handlungskonzepte.

Insofern erfüllt der Generalverkehrsplan (bzw. Verkehrsentwicklungsplan) eine Klammerfunktion über alle Verkehrsarten. Hinsichtlich der Radverkehrsplanung ergeben sich für den GVP folgende

Arbeitsschritte:

- Aufnahme der sektoralen Ziele, Konzepte und Massnahmen
- Überprüfung der Kompatibilität mit den übergeordneten / verkehrsträgerübergreifenden Leitlinien
- Hinweise auf zu beachtende Randbedingungen aus verkehrsträgerübergreifenden Konzepten
- Abstimmung von Kommunikationskonzepten

Projektergebnisse:

• Integrierte Planungen für Radverkehr und Strassennetz / MIV (und weitere) "aus einem Guss"

Die Fusswegeplanung wird häufig als räumlich beschränkte Aufgabe betrachtet. Trotz ihrer geringen Netzwirkung ergeben sich dennoch Aspekte einer gesamt- oder innerstädtischen Rahmenplanung (z.B. Wegweisung, Gestaltungsstandards, Musterlösungen bei Nutzungskonflikten...).

²³ Unter verkehrlichen Nutzungskonflikten sind keine verkehrstechnischen Kapazitätsengpässe sondern städtebaulich begründete Unverträglichkeiten zwischen der Verkehrsfunktion einerseits und der Aufenthalts- und Erschliessungsfunktion andererseits zu verstehen.

²⁴ U.a. mithilfe des Verkehrsmodells

Förderung/Ausbau des ÖPNV

Die ÖV-Planung für den Stadtbusverkehr Singen und den regionalen Linienverkehr ist in Koordination mit dem Landkreis als Aufgabenträger für den ÖPNV durchzuführen. Das Fahrplanangebot als Taktangebot, Ausbau der Schnittstellen zwischen städtischem und regionalem ÖV, sowie verbesserte Anbindung von Einwohnern und Arbeitsplätzen, Routenwahl und Fahrzeitenoptimierung und Verknüpfung mit dem Fernverkehr sind mit dem Ziel einer Steigerung der Attraktivität des ÖPNV zu gestalten. Dazu zählt auch die tarifliche Weiterentwicklung und Harmonisierung von VHB-Tarif²⁵, City-Zonen-Tarif der Stadtwerke Singen und AST²⁶-Tarif sowie Massnahmen zur Beschleunigung des innerstädtischen ÖPNV.

Im Rahmen des GVP ergeben sich folgende Aufgaben und Arbeitsschritte:

- Stärken- Schwächen- Analyse von verkehrlichem und tarifarischem ÖV-Angebot der Stadt Singen
- Erarbeitung von ÖV-Leitlinien und Zielvorstellungen
- Überprüfung des kommunalen ÖV-Netzes und des Tarifs
- Entwicklung von alternativen Handlungskonzepten für ÖV-Netz und Tarifgestaltung
- Entwicklung von ergänzenden Haltestellenkonzepten (Verknüpfung mit Fuss- und Radverkehr, Car-Sharing; Barrierefreiheit)
- Wirkungsanalysen²⁷ und multikriterielle Bewertung
- Abwägung und Entscheidungen (Verwaltung, Gremien, Verbände)
- Realisierungskonzept

Projektergebnisse:

- Fachlich und politisch abgestimmtes ÖV-Handlungskonzept
- Realisierungskonzept zur Planung/Umsetzung der Einzelmassnahmen

Umweltziele CO₂-Minderung

Für eine Erfolgkontrolle zur Ermittlung der erzielten Fortschritte im Bereich Energieeffizienz bedarf es der Festlegung von (politisch-verkehrsplanerischen) Strategien und eines überprüfbaren Zahlengerüstes.

Im Rahmen des GVP ergeben sich folgende möglichen Aufgaben und Arbeitsschritte:

- Berücksichtigung der CO₂-Minderungsziele bei der Definition einer übergeordneten Verkehrstrategie für die Stadt Singen und Ableitung von sektoralen und integrierten Teilstrategien
- Erstellung eines Handlungskonzeptes mit Massnahmenplan
 - nach Wirksamkeitskriterien zur Steigerung der Energieeffizienz und Reduktion der CO₂-Emissionen,
 - nach Kosten und
 - nach Abgleich mit standardisiertem eea-Punktesystem
- Berechnung der CO₂-Emissionen im IST-Zustand und Zielhorizont

²⁷ U.a. mithilfe des Verkehrsmodells, mit Hilfe des Verfahrens zur Wirkungsabschätzung verkehrsbeeinflussender Massnahmen auf die städtische Umwelt, MLUR (2001)

²⁵ Unter Mitarbeit der Rapp Trans AG wird ab Herbst 2010 das grenzüberschreitende Tarifangebot zwischen dem Verkehrsverbund Hegau-Bodensee und dem Tarifverbund Ostwind weiterentwickelt. U.a. soll der Geltungsbereich auf die Stadt Singen ausgedehnt werden.

²⁶ AST = Anruf-Sammeltaxi

Projektergebnisse:

- Kommunale Mobilitätsstrategie samt sektoraler Teilstrategien unter Beachtung der CO₂-Einsparpotenziale
- Handlungskonzept mit Massnahmenplan

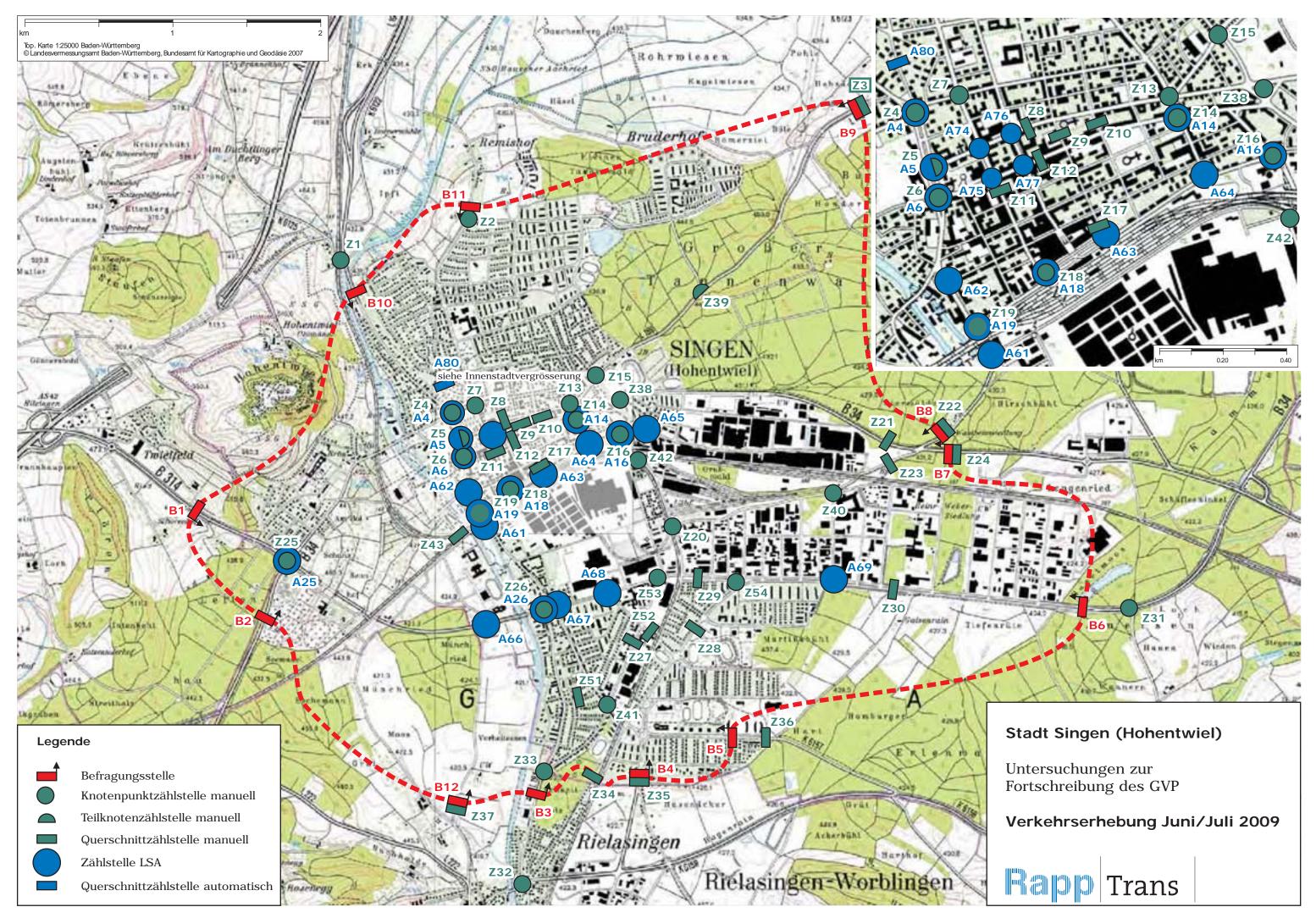
Ergänzende Gesamtverkehrserhebungen mittels Haushaltsbefragung

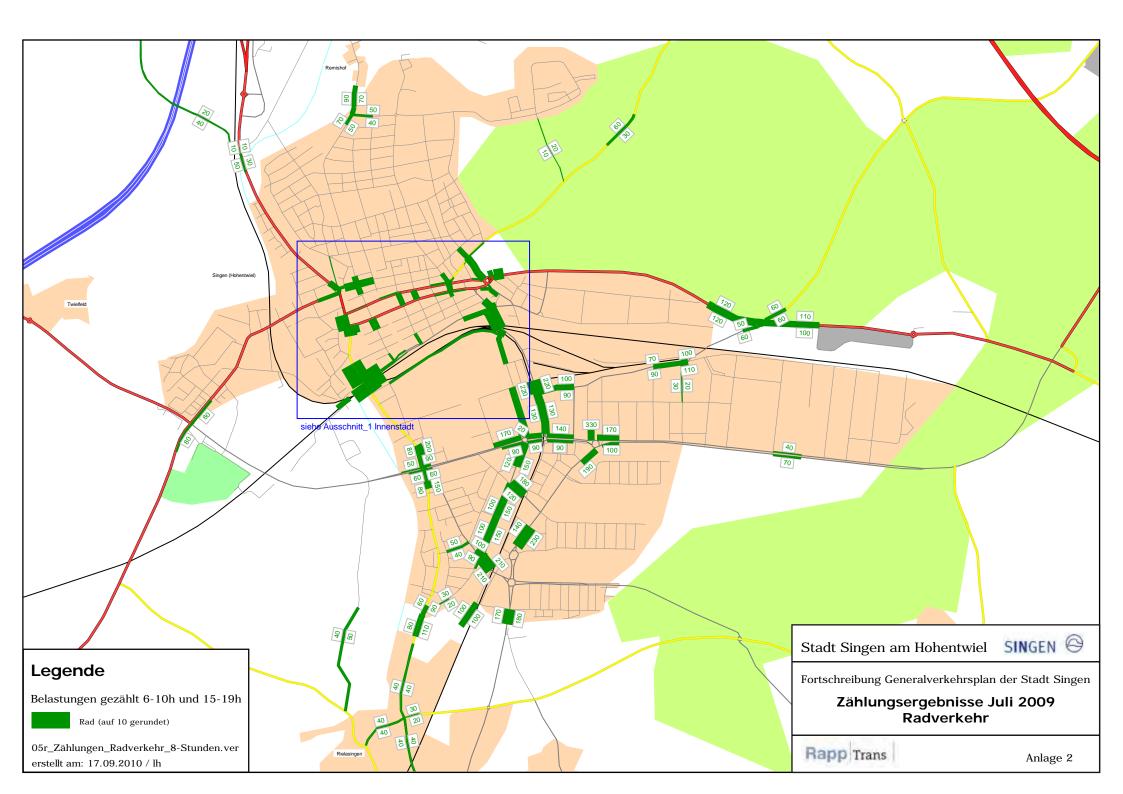
Kommunale Verkehrsplanung ist immer nur so gut, wie die Daten, auf denen sie basiert. Je detaillierter und präziser die verfügbaren Informationen, desto besser kann das Angebot im öffentlichen und Individualverkehr auf die Bedürfnisse der Bevölkerung abgestimmt werden.

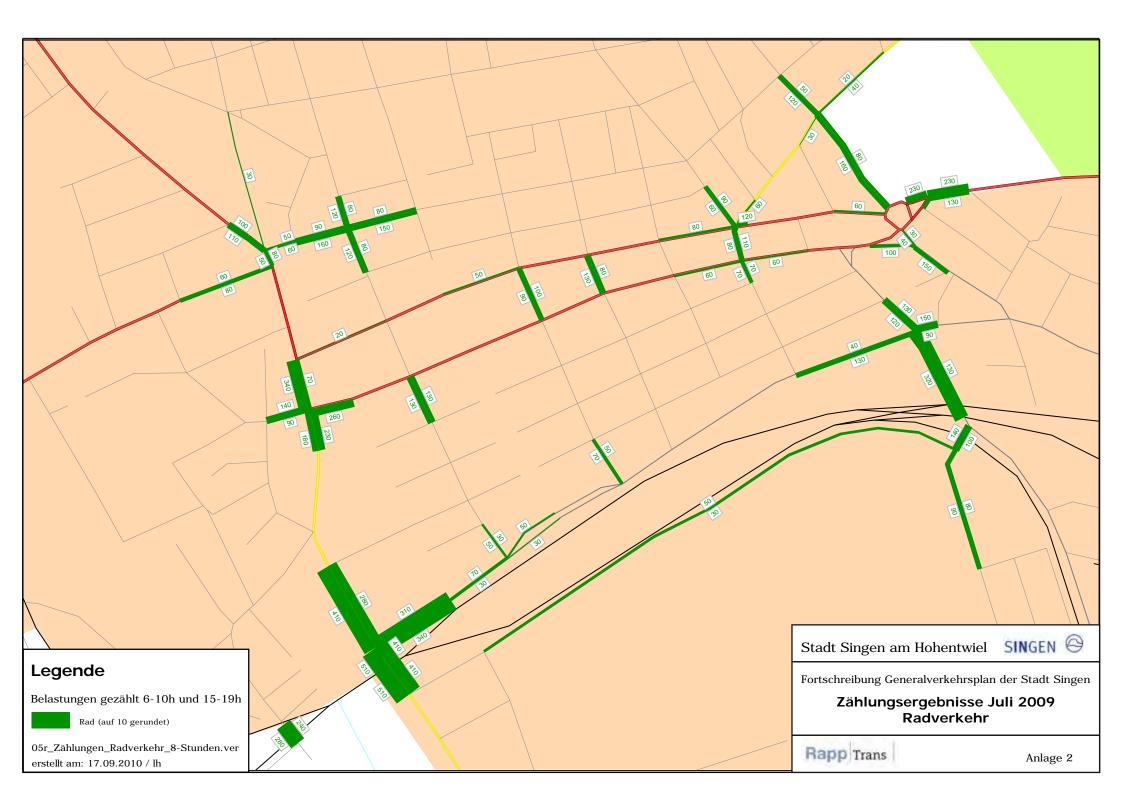
In der Regel sind der wünschenswerten Datenbasis jedoch Nutzen-Kosten-Grenzen gesetzt. Verkehrszählungen zeigen zwar die Ströme und Auslastungen an, über Motivation, Zweck der Nutzung sowie die generelle Einstellung zum Thema Mobilität verraten sie aber wenig. Erst die Kombination von Mobilitätsbefragung und Verkehrszählung erlauben eine optimale Verkehrsplanung.

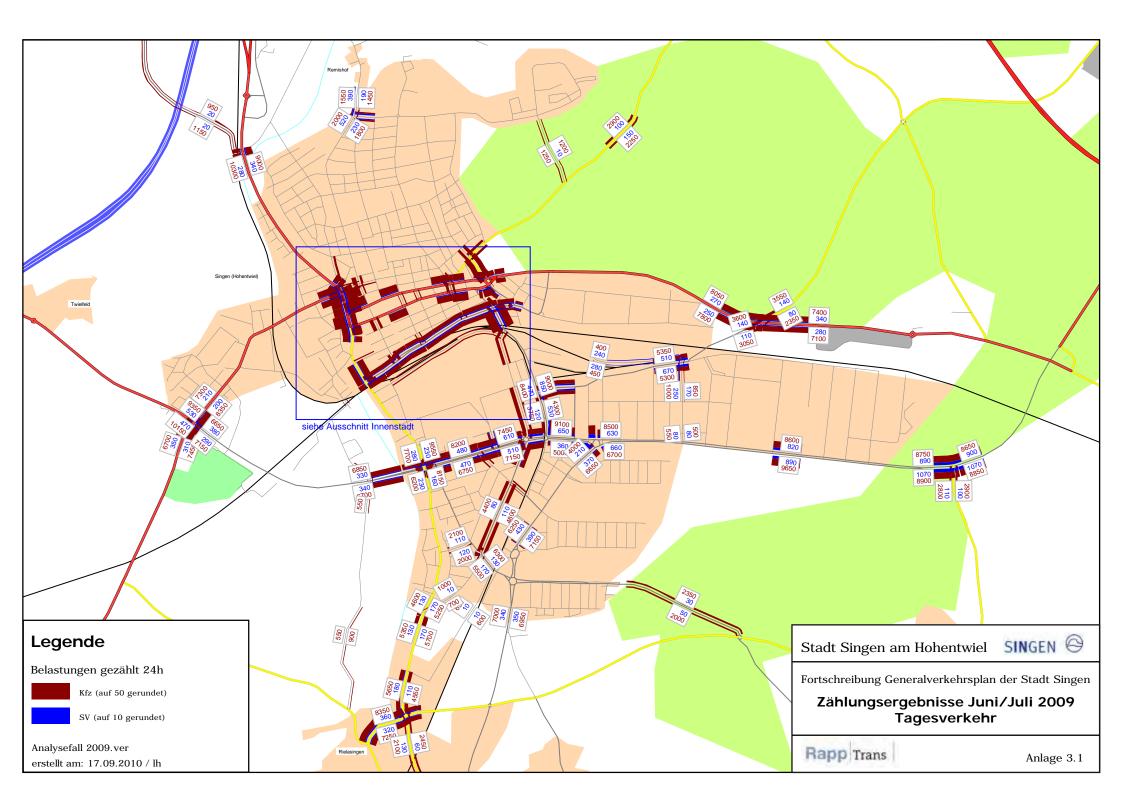
Vorteile im Einzelnen sind:

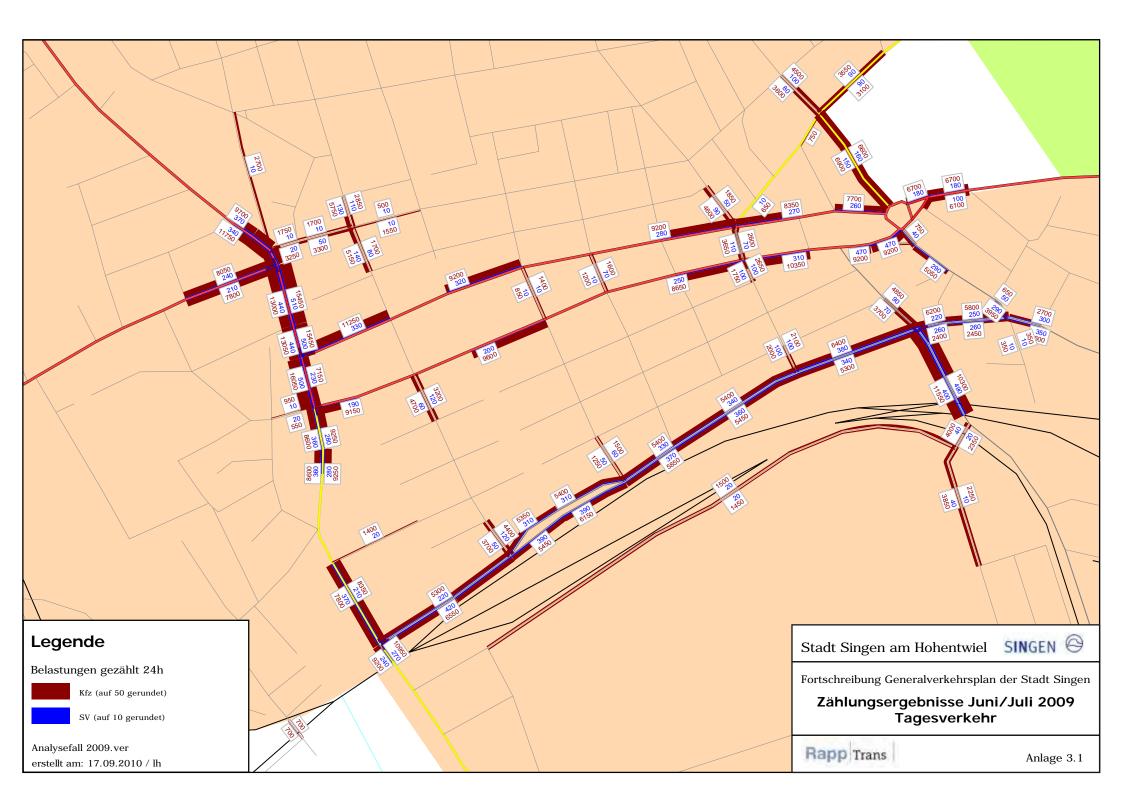
- Erfassung der Mobilität (Verkehrsströme) auf Basis einer Stichtagsbefragung übergreifend von Fusswegen über das Fahrrad, den öffentlichen Verkehr bis zum Auto.
- Ermittlung von ungenutzten Potenzialen und Überkapazitäten.
- Bevölkerungsrepräsentative Ermittlung von Einstellungen und Motivationen in der kommunalen Verkehrsmittelnutzung. Dadurch eignet sich die Erhebung nicht nur für Planungszwecke, sondern auch für das städtische/regionale Marketing.
- Umfangreiche Benchmarkingmöglichkeiten: Leistungsparameter können mit Bundesdurchschnitten und Werten anderer Regionen verglichen werden. Die Qualität und Passgenauigkeit des städtischen Verkehrsangebots kann dadurch präzise eingeordnet werden.
- Bei Wiederholung der Erhebungen können Erfolge der Verkehrspolitik und –planung transparent vermittelt und bewertet werden. Dies ist wichtig bei Teilnahme an Labelling-Prozessen, wie eea oder anderen.


Rapp Trans AG


Wolfgang Wahl


Lea Horowitz


I.V. L. Horomit


Basel, 8.11.2010 / T.A. 67.072.0 / WW Bericht GVP Singen 8.11.10.doc

